
Condensing Action Segmentation Datasets via Generative Network Inversion

Guodong Ding, Rongyu Chen and Angela Yao
National University of Singapore

{dinggd, rchen, ayao}@comp.nus.edu.sg

Abstract

This work presents the first condensation approach for
procedural video datasets used in temporal action segmen-
tation. We propose a condensation framework that lever-
ages generative prior learned from the dataset and network
inversion to condense data into compact latent codes with
significant storage reduced across temporal and channel
aspects. Orthogonally, we propose sampling diverse and
representative action sequences to minimize video-wise re-
dundancy. Our evaluation on standard benchmarks demon-
strates consistent effectiveness in condensing TAS datasets
and achieving competitive performances. Specifically, on
the Breakfast dataset, our approach reduces storage by over
500× while retaining 83% of the performance compared to
training with the full dataset. Furthermore, when applied to
a downstream incremental learning task, it yields superior
performance compared to the state-of-the-art.

1. Introduction
The effectiveness of data-driven deep neural network mod-
els hinges on training with large and diverse datasets. For
instance, ImageNet [7] comprises over 14 million natural
images for image classification, and Common Crawl [1]
provides over 5 billion website pages to foster natural lan-
guage processing tasks. However, the storage, processing,
and training costs associated with massive datasets pose sig-
nificant challenges, especially as data volumes continue to
grow. This need for efficiency has driven interest in dataset
condensation [36], a technique aimed at compressing large
datasets into smaller, information-rich subsets. Such tech-
niques have potential applications in downstream areas, in-
cluding incremental learning and federated learning.

The core objective of dataset condensation is to learn a
small synthetic dataset from an original large-scale dataset.
Ideally, models trained on the synthetic data should per-
form comparably to those trained on the original. Signif-
icant efforts since then [4, 6, 22, 35, 43] have been dedi-
cated to dataset condensation for image data. Video, how-
ever, remains under-explored. The recent work [37] con-

1MB 10MB 100MB 1G 10G 100G
0

20

40

60

80

Original
Ours

Dataset Storage Requirements

A
ve

ra
ge

d
Se

gm
en

ta
tio

n
Pe

rf
or

m
an

ce

GTEA
50Salads
Breakfast

Figure 1. Comparison of action segmentation performance with
dataset storage across common action segmentation benchmarks
at different scales. Our method effectively reduces dataset storage
while retaining competitive performance to the original setup.

denses static and dynamic information from videos for ac-
tion recognition in a two-stage framework. First, a synthetic
“image” aggregates the static visual information, while a
dynamic memory block is learned to capture and supple-
ment the motion and dynamics.

This work aims to develop an effective dataset condensa-
tion approach for temporal action segmentation (TAS) [10].
TAS is a task that divides videos into segments by assign-
ing labels on a per-frame basis to capture the sequence and
duration of distinct actions. The videos are long, often span-
ning several minutes, creating significant challenges in raw
data storage and processing. Dataset condensation for TAS
presents unique challenges that are not typically encoun-
tered for action recognition datasets. First, TAS requires
frame-level predictions rather than assigning a single la-
bel to an entire video or segment, as in action recognition.
Consequently, dataset condensation for TAS must be ca-
pable of restoring the actual temporal resolutions of seg-
ments. Directly adapting the existing video condensation
approach proposed by [37] for condensing TAS datasets

is non-trivial. [37] uses a fixed-length frame processing,
which cannot handle varying length segments while being
able to restore the original temporal resolution. Addition-
ally, the network in [37] is designed to work with RGB
image sequences, while TAS typically uses pre-computed
frame features [12, 21, 39]. Second, the action ordering in
the video sequences is not rigidly fixed, but there is still a
degree of structure or dependency that governs how actions
unfold. Some actions can occur flexibly in their sequence,
while others must follow a specific progression. As a re-
sult, redundant action sequences can emerge, where iden-
tical patterns in action order are presented multiple times.
This sequence redundancy is not present in AR datasets.

This work presents the first study on condensing TAS
datasets. We propose a framework that condenses the
dataset with a generative model into a set of latent codes.
The generative model is first trained on the entire dataset to
learn the prior. Then, through network inversion, we opti-
mize a set of latent codes as the condensed data, minimizing
the error between the generated and original frame features.

Specifically, we use the TCA model proposed by [11]
as our generative model. TCA is a conditional VAE re-
constructing frame features while accounting for temporal
dynamics. It is well-suited for our task because it com-
presses and restores the temporal resolution of action seg-
ments through it’s coherence variable. TCA also condenses
the feature dimension, as the latent code is more compact
than the original feature. As a result, the storage require-
ment for a single action segment can be significantly re-
duced to the segment’s latent code. This corresponds to the
first challenge of TAS dataset condensation.

To address the second challenge of sequence redun-
dancy, we propose a diversity-based sampling strategy
grounded in the edit distance criterion. This approach itera-
tively selects the candidate sequence that maximizes the di-
versity within the chosen set. Empirically, we observed that
TAS models achieve comparable performance with only
half of the sequences. Our approach greatly reduces the
storage while achieving comparable segmentation perfor-
mance to the original dataset as shown in Fig. 1.

Contributions. Our contributions are summarized as
follows: (1) This work is the first to investigate and pro-
pose an effective dataset condensation approach for the tem-
poral action segmentation task. (2) We propose a genera-
tive condensation framework that first learns the generative
prior on the dataset and then leverages the network inver-
sion to condense data into compact latent codes. In addition,
we propose a sampling strategy to further reduce the stor-
age requirements based on sequence diversity. (3) Our ap-
proach effectively condenses TAS datasets of varying scales
while consistently yielding comparable segmentation per-
formances. Our approach outperforms the state-of-the-art
by 10.7% on Breakfast under an incremental setup.

2. Related Work
Temporal Action Segmentation. Various approaches have
been proposed to tackle the temporal action segmenta-
tion task [10]. Fully supervised methods require dense
annotations for each video frame [12, 39]. In contrast,
semi-supervised methods [8, 32] only necessitate dense
labels for a subset of the videos, leaving the rest unla-
beled. There are also weaker forms of supervision, such
as action transcripts [17], action sets [14, 19, 28], times-
tamps [20, 27], and activity labels [9]. Additionally, some
approaches [18, 29, 30] operate in an unsupervised set-
ting without relying on any action labels. Recent emerging
directions include learning TAS incrementally [11] where
procedural activities are learned sequentially and in an on-
line [31, 45] fashion. However, the storage burden of these
video datasets remains a pressing issue as these videos are
long and with rich redundancy. Our work is the first to study
the dataset condensation of temporal action segmentation
datasets from the perspective of efficient data storage.
Dataset condensation. Dataset condensation (DC) is first
formally introduced in [36]. The target is to learn a small set
of synthetic data from an original large-scale dataset so that
models trained on the synthetic dataset can perform compa-
rably to those trained on the original. Based on the bilevel
optimization formulation, varying techniques are leveraged
to alleviate optimization difficulty including group opti-
mization [46], the Neural Tangents Kernel (NTK) [24, 25],
empirical Neural Network Gaussian Process (NNGP) [23].
Instead of matching model performance, [4, 6, 15, 42, 44]
aim to indirectly achieve this by matching model parameters
trained on original and condensed datasets. Another promi-
nent line of work bypassing the bilevel optimization directly
matches the distribution of original and condensed synthetic
data [35, 43], known as distribution matching. Differently,
[5, 41] introduced the generative model and synthesized in
its latent space. Yet there is few work that extends this to the
video domain. The work most related to ours is the dataset
condensation for action recognition [37]. They disentangle
the static and dynamic information in the video to minimize
temporal redundancy. However, their method is not appli-
cable to temporal action segmentation as they can not ac-
count for varying temporal resolution of actions and video
redundancy. Thus, we are motivated to propose a genera-
tive framework to tackle the procedure video condensation
problem for temporal action segmentation.

3. Dataset Condensation for TAS
3.1. Preliminaries

Temporal Action Segmentation (TAS). Temporal action
segmentation is a task that segments untrimmed procedural
videos into contiguous and non-overlapping actions. For
example, given a video X = {x1, ..., xT } of T frames

x

a

c

µ

ω

ε z

a

c

x̂

E
nc

od
er

D
ec

od
er

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)
z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·
1

D
ec

od
er

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

Figure 2. Generative Feature and Temporal Condensation Framework. (a) The generative action model is a conditional VAE that is trained
to reconstruct the input frames conditioned on the action class label and a coherence variable. (b) The network inversion aims to optimize
between decoded and original segments. Randomly sampled latent codes z1 and z2 are first inflated over time to the segment length, then
concatenated with the action label and coherence variable for decoding. During the optimization, only the latent codes get updated while
the decoder always stays fixed. These optimized latent codes z∗1 and z∗2 are stored as the condensed representation of the original segment.

indicates parameter updates during learning, while the indicates that the parameter is kept frozen.

long, a segmentation model outputs N continuous action
segments consecutive in time:

s1:N = (s1, s2, ..., sN), where sn = (an, tn, ℓn), (1)

s.t. tn+1 = tn + ℓn.

sn is a segment of length of ℓn, with action class label
an ∈ A from A predefined categories. The tn denotes the
starting timestamp of segment sn. Alternatively, most ex-
isting works [12, 21, 39] formulate it as a frame-wise clas-
sification task (Lcls) and encourage the continuity of action
segments with a smoothing term (Lsm) with the learning ob-
jective written as:

Ltas = Lcls(x, y) + λ · Lsm(x, y), (2)

where y ∈ A is the action label and λ a trade-off parameter.
Dataset Condensation (DC). Let R = {Xr,Yr} represent
a real image dataset, where Xr ∈ Rnr×d denotes the set
of training samples and Yr ∈ Rnr×c corresponds to their
associated labels. Here, nr denotes the number of original
samples while d and c represent the dimensionality of the
input features and output labels, respectively. The objective
of dataset condensation is to construct a synthetic dataset of
ns samples, i.e. S = {Xs,Ys}, where Xs ∈ Rns×d and
Ys ∈ Rns×c, with a considerably reduced size compared
to the real dataset, such that ns ≪ nr.

3.2. Task Formulation

Given an original TAS dataset with nr training videos, rep-
resented as R = {(Xi,Yi)}nr

i=1. Each video representation
X ∈ RT×D and its corresponding action label Y ∈ RT×A

have the same temporal length T . Here, D and A denote

the dimensions of frame feature space (x ∈ RD) and the ac-
tion space (y ∈ RA), respectively. The goal of dataset con-
densation is to create a compact subset S = {X̂i, Ŷi}ns

i=1,
where X̂ ∈ RT ′×d represents a condensed version of orig-
inal video. The size of S is expected to be significantly
smaller than that of the original dataset R.

This objective can be achieved through two levels of
dataset condensation: (1) Sample compression: reducing
the dimensionality of each video such that T ′×d ≪ T ×D
and (2) Sample Reduction: reducing the total number of
samples, i.e., ns ≪ nr. In light of this, our condensation
framework implements reductions at both levels: for sample
compression, we propose a generative feature and temporal
condensation technique using network inversion (Sec. 3.3).
For sample reduction, we use a diversity-based sampling
strategy (Sec. 3.4).

3.3. Generative Feature & Temporal Condensation

Generative models are compact yet flexible, able to produce
outputs of various lengths, making them ideal for condens-
ing TAS datasets. The condensation process involves two
main stages. In the first stage, a generative model is trained
to represent action segments. In the second stage, a network
inversion process is applied to optimize the latent codes, en-
suring the condensed dataset captures an optimal represen-
tation of the original action segments.
Generative Action Model. We choose the Temporally Co-
herent Action (TCA) model proposed in [11] as our genera-
tive action model. TCA is essentially a compact, two-layer
MLP VAE trained to reconstruct frame features. Specif-
ically, the encoder in the TCA model takes three inputs:
frame feature x, action label a, and a coherence variable
c. The variable c is mathematically defined as the relative

position of the frame within its segment:

ci = (i− 1)/(ℓ− 1), and ci ∈ [0, 1]. (3)

The VAE’s encoder maps these inputs in a latent space
while the decoder reconstructs the frame feature x̂. We de-
note the encoder and decoder as E(x, a, c) = qϕ(z|x, a, c)
and D(z, a, c) = pθ(x|z, a, c), respectively. The TCA
model is trained on the entire dataset’s video frames with
a reconstruction loss and a KL divergence regularizer:

LTCA = Ez log pθ(x|z, a, c)︸ ︷︷ ︸
Lrecon

−DKL(qϕ(z|x, a, c)||p(z))︸ ︷︷ ︸
Lreg

.

(4)
An overview of the generative action model is depicted
in Fig. 2(a). In this way, a segment of Rℓ×D can be effi-
ciently compressed to a latent distribution characterized by
the mean and standard deviation (µ, σ) ∈ Rd, d is the di-
mension of the latent space. An advantage of using a gen-
erative model for condensing TAS videos is the ability to
restore the original resolution. Such a model can generate
segments of any specified length ℓ, producing each frame x̂
by decoding a randomly sampled latent code z as follows:

x̂i = pθ(x|z, a, ci), and i ∈ [1, ..., ℓ]. (5)

To ensure temporal continuity of generated features, [11]
suggests a fixed latent code z is applied across all frames
within the same segment.
Network Inversion. The above model learns inherent ac-
tion priors from the video dataset, enabling it to generate
segments that reflect realistic actions. However, segments
decoded from randomly sampled latent codes can still devi-
ate significantly from real data. To limit the deviations, we
propose using network inversion. Neural network inversion
is the process of determining a neural network input when
given the corresponding output. Formally, given a neural
network f : Rn → Rm that maps an input x ∈ Rn to an
output y ∈ Rm, where y = f(x). Mathematically, given an
output y, the objective of neural network inversion is to find
an input x∗ such that:

x∗ = f−1(y), (6)

where f−1 represents an approximate or exact inverse of
function f . Since neural networks are generally not invert-
ible, the problem can be posed as an optimization problem:

x∗ = argmin
x∈Rd

C(f(x), y), (7)

where C(·, ·) is a cost function. Note that during the inver-
sion, both f(·) and y remain fixed, while only x is updated.

As our generation depicted in Eq. (5) is at the segment
level, the inversion objective from Eq. (7) becomes:

z∗ = argmin
z∈Rd

||D(z,a, c)− x||22︸ ︷︷ ︸
Linv

, (8)

where z = z ⊗ 1ℓ, a = a ⊗ 1ℓ, and c = [c1, . . . , cℓ]. 1ℓ

is a vector of ones of length ℓ. We choose the ℓ2 norm as
the cost function in the inversion loss Linv to align with the
reconstruction term Lrecon in the generative model training
(as shown in Eq. (4)). Upon performing the inversion, the
optimized latent code z∗ ∈ Rd is stored for each segment.
Instances per Segment. In TAS datasets, action segments
can be particularly long, where a single global latent code
may not suffice to restore the full complexity and temporal
dynamics of the entire segment. This limitation highlights
the need for finer-grained approximations. To address this,
we introduce the concept of instances per segment, which
divides each segment into smaller, finer-grained instances
for more precise network inversion. This is akin to the in-
stances per class commonly used in existing dataset conden-
sation works [40]. We evenly split segments into smaller
instances to enable inversions at local scales.

Specifically, during the inversion step, for a given seg-
ment, we first initialize a set of K random codes {zk}Kk=1.
These codes are evenly inflated over time to match the ac-
tual length of the segment, yielding the vector z = [z1 ⊗
1ℓ1 , ..., zK ⊗1ℓK], where ℓk = ℓ

K . The vector z is concate-
nated with the action label a and the coherence variable c,
and the combined input is fed into the decoder for network
inversion as defined in Eq. (8). After performing the inver-
sion, we store the set of optimal latent codes {z∗k}Kk=1 as
the condensed representation of the segment’s features. An
illustrative depiction of the inversion process for a segment
of length ℓ = 6 with K = 2 instances per segment is shown
in Fig. 2(b). Initially, two latent codes z1, z2 are randomly
sampled and expanded temporally to generate the segment
{x̂} through the decoder. The decoder remains fixed while
only the latent codes are optimized. Once optimized, the
final z∗1 , z

∗
2 are stored as the condensed segment.

The proposed framework simultaneously condenses fea-
ture and temporal dimensions and reduces the storage re-
quirement for each segment. Specifically, a segment x ∈
Rℓ×D can be efficiently condensed into latent codes z ∈
RK×d, with the condensation factor given by ℓ·D

K·d . At the
video level, our framework condenses the original X ∈
RT×D into a reduced representation X̂∗ ∈ RKN×d, where
N denotes the number of segments in the video, which is
substantially smaller than the original video length T .

3.4. Diverse Sequence Sampling

The condensation process described above occurs at the
sample level, reducing both feature and temporal dimen-
sions. To account for sample redundancy, we introduce a
diversity-based pruning strategy. Our intuition is that the
selected sequences, taken collectively, should capture the
maximum diversity of action ordering within the dataset.
This ensures that the pruned set retains the broadest range
of unique temporal patterns and action variations. Edit dis-

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =

max(m,n), min(m,n)=0

min(e[m−1, n]+1, e[m,n−1]+1,

e[m−1, n−1]+1(smi ̸=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. 1(·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s∗ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s∗ = argmax
si∈D\S

min
sj∈S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = γ|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., γ = 0.5. This yields an
extra ∼50% reduction in the storage of latent codes.

3.5. Decoding for TAS

Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z∗k}, action labels a and length ℓ
(coherence variable c), with the decoder D as follows:

x̂∗ = D(z∗,a, c), (11)

where z∗ = [z∗1 ⊗ 1ℓ1 , ..., z
∗
K ⊗ 1ℓK]. These restored seg-

ments x̂∗ are then concatenated in time to form videos X̂∗,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
∗, y) + λ · Lsm(x̂

∗, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation

Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation

Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e−3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z∗. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio γ = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e−4 for 50 epochs and
1e−4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring
video [44]. This method effectively reduces video length to
the number of segments, i.e., RT×D → RN×D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

GTEA [13] 50Salads [33] Breakfast [16]

Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage

MS-TCN [12]

Original 79.0 76.3 85.8 / 83.4 / 69.8 245 MB 80.6 63.1 69.9 / 67.4 / 59.0 4.5 GB 67.2 60.6 50.5 / 46.3 / 36.8 28 GB

Mean 71.2 73.3 77.1 / 73.7 / 59.4 7.2 MB 69.0 42.7 50.0 / 46.1 / 37.4 7.8 MB 47.6 31.8 27.8 / 23.3 / 15.6 96 MB
Coreset [38] 66.7 66.1 72.4 / 68.9 / 53.2 7.2 MB 61.7 43.3 49.9 / 46.3 / 35.4 7.8 MB 49.7 36.8 32.3 / 27.5 / 19.3 96 MB
TCA [11] 60.9 54.1 59.2 / 55.3 / 39.3 - 56.4 33.6 39.8 / 35.8 / 25.9 - 34.2 20.7 17.9 / 13.8 / 8.4 -
Encoded 70.4 65.5 72.2 / 68.8 / 52.1 3.6 MB 69.0 43.6 50.6 / 46.0 / 37.4 3.9 MB 37.9 49.8 40.0 / 32.8 / 19.4 44 MB
Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Encoded† 70.5 72.7 77.1 / 73.7 / 59.8 30.5 MB 72.1 58.2 63.2 / 60.0 / 49.3 564 MB 43.4 53.2 45.8 / 37.4 / 22.8 3.4 GB
Ours† 73.3 73.8 79.2 / 75.4 / 65.5 30.5 MB 72.8 59.8 65.2 / 61.3 / 51.3 564 MB 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB

ASFormer [39]

Original 79.7 84.6 90.1 / 88.8 / 79.2 245 MB 85.6 79.6 85.1 / 83.4 / 76.0 4.5 GB 73.5 75.0 76.0 / 70.6 / 57.4 28 GB

Mean 72.2 76.9 82.1 / 79.7 / 65.1 7.2 MB 71.6 49.8 56.6 / 52.5 / 43.4 7.8 MB 52.2 43.2 43.5 / 38.3 / 26.7 96 MB
Coreset [38] 71.0 75.4 81.0 / 78.1 / 62.9 7.2 MB 69.4 46.8 56.6 / 52.9 / 39.6 7.8 MB 52.0 48.1 48.3 / 42.4 / 29.7 96 MB
TCA [11] 62.2 57.8 63.0 / 57.4 / 39.9 - 66.8 44.0 52.2 / 47.3 / 36.6 - 36.6 28.2 26.3 / 22.1 / 14.3 -
Encoded 69.2 70.2 73.3 / 67.3 / 49.8 3.6 MB 71.2 45.4 55.0 / 50.4 / 40.2 3.9 MB 37.6 53.6 50.7 / 41.3 / 24.0 44 MB
Ours 77.9 82.7 86.4 / 84.5 / 70.4 3.6 MB 81.2 68.9 77.0 / 73.8 / 64.7 3.9 MB 59.8 48.8 54.1 / 47.7 / 34.1 44 MB

Encoded† 74.0 78.1 83.1 / 79.6 / 67.3 30.5 MB 75.6 60.1 67.7 / 64.2 / 53.5 564 MB 45.7 54.8 52.6 / 43.3 / 25.2 3.4 GB
Ours† 75.0 79.0 83.6 / 79.5 / 67.7 30.5 MB 76.2 65.0 73.1 / 68.8 / 58.5 564 MB 61.1 61.4 62.4 / 56.0 / 42.1 3.4 GB

Table 1. Performance comparison on dataset condensation for TAS on three common benchmarks with different backbones. Storage sizes
are highlighted in colors (high, medium, low). Our method remarkably reduces storage while retaining competitive performances across
different datasets and model architectures. More details of the settings (d, K, and γ) for each method are provided in the Supplementary.

– “TCA” [11] is a baseline that follows its original imple-
mentation in which action segments are generated directly
from random latent codes. This method does not require
storage for latent codes, as they can be sampled on the fly
during decoding.
– “Encoded” is the closest to our setup, with the key differ-
ence being that, instead of using network inversion to obtain
latent codes, it stores the mean of encoded segment frames.
Specifically, zk = mean(µ1, ..., µℓk). This approach results
in the same storage requirement as ours.
– “Encoded†” refers to a setup similar to “Encoded” except
for removing the sequence sampling and setting the num-
ber of instances per segment to the actual segment length,
i.e., K = ℓ, which creates a latent code for each individual
frame. The approach condenses along the feature dimen-
sion rather than the temporal dimension.

4.3. Effectiveness

Table 1 compares our approach to the baselines on three
widely adopted TAS benchmarks. As observed, approaches
like “Mean” and “Coreset”, which primarily condense from
the temporal aspect, achieve similar performance across all
datasets while maintaining an identical storage size. Note
that in the best scenario, boring videos generated by these
approaches can account for up to 80% performance of train-
ing with the “Original”. This highlights the temporal re-

dundancy present in videos. TCA [11] does not incur ad-
ditional storage requirements for the latent code, yet it pro-
duces the lowest overall performance across all evaluation
metrics on three datasets. Although the generated segments
inherit the action priors learned from the dataset, it is still
likely the decoded segments from randomly sampled latent
codes may not align well with the original data. A segmen-
tation model trained on these misaligned features may not
generalize well to the real testing data.

By storing encoded mean features of segments from the
encoder as latent codes and diverse sequence sampling,
“Encoded” can manage to achieve segmentation perfor-
mance comparable to the “Mean” baseline, while requiring
only half the storage cost. The best performance is achieved
by our approach, which adds a network inversion process on
top of “Encoded”. By imposing network inversion, a sig-
nificant performance gain in segmental metrics is observed.
For instance, on the 50Salads dataset, the average F1 score
is boosted by a substantial 14.1% (from 44.7% to 58.8%).
This underscores the effectiveness of network inversion, as
it adapts the latent codes to better reflect the actual data.

Comparing across storage sizes, our approach also sig-
nificantly outperforms its counterparts, “Mean” and “Core-
set”, while only requiring roughly half the storage burden –
44 MB compared to 96 MB on the Breakfast dataset.

Our proposed condensation framework is independent of

Sampling Acc Edit F1@{10, 25, 50} Storage
G

T
E

A ✗ 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB
Random 74.0 69.3 76.2 / 72.8 / 60.4 3.6 MB

Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB

50
Sa

la
ds ✗ 75.3 60.0 66.2 / 62.6 / 49.9 7.8 MB

Random 71.9 58.9 62.3 / 58.4 / 49.5 3.9 MB
Ours 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB

B
re

ak
fa

st ✗ 55.6 52.3 47.3 / 42.1 / 31.4 91 MB
Random 52.3 39.9 41.2 / 36.5 / 24.1 44 MB

Ours 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Table 2. Effectiveness of the sequence sampling strategies on three
TAS benchmarks. Our proposed sampling outperforms random
while retaining comparable performances to the case where no se-
quence sub-sampling is performed.

γ Acc Edit F1@{10, 25, 50} Storage Ratio(%)

0.1 45.0 44.9 40.5 / 35.6 / 23.2 1.3 MB 0.53
0.2 53.1 49.1 50.4 / 44.6 / 30.6 1.9 MB 0.78
0.3 56.9 52.3 56.8 / 52.6 / 36.7 2.4 MB 0.98
0.4 73.6 72.9 77.1 / 74.2 / 63.1 2.9 MB 1.18
0.5 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 1.47

1 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB 2.94

Table 3. Sequence sampling ratio (γ) effects on GTEA. With only
0.5, we can achieve comparable performances to the full γ = 1.

the segmentation model, making it compatible with differ-
ent backbones. TAS performances in Tab. 1 with two seg-
mentation backbones [12, 39] demonstrates consistent per-
formance improvements over the baselines.

4.4. Ablation and Hyper-parameter Study

Sequence Sampling Strategy. To evaluate the effective-
ness of our proposed diversity-based sequence sampling
technique, we compare it against random sampling and re-
port the results in Tab. 2. For all datasets, the default sam-
pling ratio γ is set to 0.5. We first observe that, with a
sampling ratio of 0.5, effectively reducing the number of
samples by half, the segmentation performance is not sig-
nificantly affected, highlighting sample redundancy in the
video datasets. On the other hand, our strategy consis-
tently outperforms the random sampling across all metrics.
Specifically, on the 50Salads dataset, there is a 2.5% gap
in the frame-wise accuracy (74.4% vs. 71.9%). The con-
sistent performance gain over the counterpart underscores
that, when constrained by a sequence budget, prioritizing
the incorporation of diverse action sequences enhances the
model’s generalization capability more effectively.
Sequence Sampling Ratio γ. We further evaluate segmen-

Original
Ours

Figure 3. T-SNE visualization of original and decoded video fea-
tures. Different colors indicate different action classes. The visu-
alization shows that our generated features are well-aligned with
original features. Best viewed when zoomed in.

IPS (K) Acc Edit F1@{10, 25, 50} Storage Ratio(%)

Mean 47.6 31.8 27.8 / 23.3 / 15.6 96 MB 0.34

1 52.1 32.2 28.1 / 23.7 / 16.0 11 MB 0.04
2 52.7 38.4 34.9 / 30.1 / 21.1 22 MB 0.08
4 52.4 45.9 40.7 / 35.8 / 26.0 45 MB 0.15
8 55.6 52.3 47.3 / 42.1 / 31.4 91 MB 0.31

16 54.2 51.2 47.4 / 41.8 / 31.0 182 MB 0.62

† 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB 12.0

Table 4. Effect of the number of instance per segment (K) on
Breakfast dataset without sequence sampling imposed. The ratio
denotes the relative storage size of each setup compared to the
original full dataset size. † indicates the setup in which latent codes
are optimized on a per-frame basis.

tation performances on the GTEA dataset using various se-
quence sampling ratios γ, as shown in Tab. 3. As γ in-
creases, a greater number of sequences are used to train the
segmentation model, leading to a clear trend of improve-
ment on all segmentation metrics. Notably, there is a sub-
stantial performance boost when γ increases from 0.3 to 0.4,
with a 16.7% improvement in Acc and 20.6% in the Edit
score. Given the small scale of the GTEA dataset, a sam-
pling ratio of 0.5 provides sufficient diversity in sampled
sequences to effectively represent the dataset.
Instances per Segment (K). We next examine how the
number of instances per segment (K) impacts the seg-
mentation performance and storage. Table 4 presents the
segmentation performance without imposing the sequence
sampling. Across various K values, our approach consis-
tently outperforms the “Mean” baseline. Notably, even with
K = 1, requiring only 1/8 of the storage (11 MB vs. 96

MSTCN [12] ASFormer [39]

Acc Edit F1@{10, 25, 50} Avg Acc Edit F1@{10, 25, 50} Avg

Mean [2] 18.4 14.1 14.4 / 13.0 / 9.8 13.9 12.1 10.4 10.7 / 9.7 / 7.9 10.2
TCA [11] 31.4 25.0 25.5 / 22.9 / 17.4 28.3 36.0 31.9 32.4 / 29.3 / 22.8 30.5
Ours 38.2 31.6 32.8 / 29.7 / 22.8 31.0 46.7 41.1 41.7 / 38.3 / 30.8 39.7

Original 44.4 40.2 40.8 / 36.9 / 28.8 38.2 51.7 46.2 47.2 / 43.4 / 34.7 44.6

Table 5. Performance comparison on the Breakfast dataset under the 10-task incremental setup following [11]. “Avg” indicates the averaged
performance on all metrics. Our approach consistently surpasses the counterparts, with both MSTCN and ASFormer backbones.

MB), a performance margin is achieved over “Mean”. In
both cases, each segment is condensed into a single repre-
sentation, but with different dimensions. The “mean” ap-
proach retains the original feature dimension D = 2048
while K = 1 maps the segment into one latent code with
dimension d = 256. This improvement demonstrates our
method’s effectiveness under extreme storage constraints.

Frame-wise Acc shows minimal sensitivity to K, with
performance remaining relatively stable and a maximum
variation of 3.5% across different K values. However, seg-
mental metrics, such as Edit and F1 scores, demonstrate
a clear upward trend as K increases. For example, with
K = 1, where each segment is condensed into a single la-
tent code, the Edit score is 32.2%. Increasing K to 8 boosts
the score to 52.3%, highlighting that a finer-grained con-
densation improves representation. This is because higher
K values allow each segment to be represented by multiple
latent codes rather than a single, highly compressed one,
creating a more detailed representation that better approxi-
mates the original data. However, performance plateaus at
K = 16, with no further improvement when condensation
is conducted on a per-frame basis (denoted by †). This sug-
gests that the performance may be constrained by the gener-
ative model’s expressiveness. The storage size, as expected,
increases linearly with K. With K = 8, the compression
ratio for Breakfast is 0.31%, providing a good balance be-
tween storage efficiency and performance.
Visualization. We plot both the original and decoded frame
features using T-SNE [34] for a sample video sequence
from the GTEA dataset in Fig. 3. As shown, our network
inversion approach effectively restores features that closely
approximate the original, using the optimized latent codes.
More visualizations are available in the Supplementary.

5. Incremental Action Segmentation
One promising application of dataset condensation is in
continual learning as it effectively alleviates the storage bur-
den associated with reply data.

We integrate our approach into the incremental temporal
action segmentation (iTAS) framework recently proposed
by [11]. In this setup, iTAS trains the segmentation model

incrementally on different activity videos, with each stage
focused on training with videos from a single activity. Each
activity is treated as consisting of disjoint action classes,
distinct from those of other activities. In their training, they
assume that a small reservoir of samples from previous ac-
tivities is considered available for the model to revisit, a
process known as data replay. Our framework is applied to
condense the replay data, the process is identical but on a
per-activity basis.

Following [11], we conduct the experiment on the Break-
fast dataset using the 10-task incremental setup, where each
task corresponds to a single activity. Specifically, we train
the TCA model for 2.5K epochs same as [11] and optimize
the latent codes for the 10K iterations. To ensure the most
efficient storage, we select the number of instances per seg-
ment as K = 1. This choice aligns with [11], where they
also sample a single random latent code for each segment
decoding. The results are summarized in Tab. 5. With
our approach applied, we achieve a 6.8% increase in the
final frame-wise accuracy with MSTCN [12] and a 10.7%
increase with ASFormer [39]. Furthermore, our approach
also significantly improves all segmental metrics by a mar-
gin larger than 10% with ASFormer.

6. Conclusion
This work introduces the first study on dataset condensation
of temporal action segmentation. We propose a novel con-
densation framework to tackle the unique challenges of han-
dling long procedural videos. It first condenses video seg-
ments into compact latent codes through generative network
inversion from both temporal and channel perspectives. A
diverse sequence sampling is further proposed to reduce the
video-wise redundancy. Results on common benchmarks
and with different backbones show our framework signifi-
cantly reduces storage requirements, while preserving per-
formance comparable to the original. This framework offers
a practical solution for effectively condensing TAS datasets.

Acknowledgment This research / project is supported by
the Ministry of Education, Singapore, under the Academic
Research Fund Tier 1 (FY2022).

References
[1] Common crawl. https://commoncrawl.org/

about/. 1
[2] Lama Alssum, Juan León Alcázar, Merey Ramazanova,

Chen Zhao, and Bernard Ghanem. Just a glimpse: Rethink-
ing temporal information for video continual learning. In
CVPRW, 2023. 8

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017. 5

[4] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation by
matching training trajectories. In CVPR, 2022. 1, 2

[5] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Generalizing dataset dis-
tillation via deep generative prior. In CVPR, 2023. 2

[6] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling
up dataset distillation to imagenet-1k with constant memory.
In ICML, 2023. 1, 2

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1

[8] Guodong Ding and Angela Yao. Leveraging action affinity
and continuity for semi-supervised temporal action segmen-
tation. In ECCV, 2022. 2

[9] Guodong Ding and Angela Yao. Temporal action segmen-
tation with high-level complex activity labels. IEEE TMM,
2022. 2

[10] Guodong Ding, Fadime Sener, and Angela Yao. Tempo-
ral action segmentation: An analysis of modern techniques.
IEEE TPAMI, 2023. 1, 2

[11] Guodong Ding, Hans Golong, and Angela Yao. Coherent
temporal synthesis for incremental action segmentation. In
CVPR, 2024. 2, 3, 4, 5, 6, 8

[12] Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage
temporal convolutional network for action segmentation. In
CVPR, 2019. 2, 3, 5, 6, 7, 8

[13] Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning
to recognize objects in egocentric activities. In CVPR, 2011.
5, 6

[14] Mohsen Fayyaz and Jurgen Gall. Sct: Set constrained tem-
poral transformer for set supervised action segmentation. In
CVPR, 2020. 2

[15] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo
Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and
Hyun Oh Song. Dataset condensation via efficient synthetic-
data parameterization. In ICML, 2022. 2

[16] Hilde Kuehne, Ali Arslan, and Thomas Serre. The language
of actions: Recovering the syntax and semantics of goal-
directed human activities. In CVPR, 2014. 5, 6

[17] Hilde Kuehne, Alexander Richard, and Juergen Gall. Weakly
supervised learning of actions from transcripts. Computer
Vision and Image Understanding, 163:78–89, 2017. 2

[18] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen
Gall. Unsupervised learning of action classes with contin-
uous temporal embedding. In CVPR, 2019. 2

[19] Jun Li and Sinisa Todorovic. Set-constrained viterbi for set-
supervised action segmentation. In CVPR, 2020. 2

[20] Zhe Li, Yazan Abu Farha, and Jurgen Gall. Temporal action
segmentation from timestamp supervision. In CVPR, 2021.
2

[21] Daochang Liu, Qiyue Li, Anh-Dung Dinh, Tingting Jiang,
Mubarak Shah, and Chang Xu. Diffusion action segmenta-
tion. In ICCV, 2023. 2, 3

[22] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xin-
chao Wang. Dataset distillation via factorization. NeurIPS,
35, 2022. 1

[23] Noel Loo, Ramin Hasani, Alexander Amini, and Daniela
Rus. Efficient dataset distillation using random feature ap-
proximation. NeurIPS, 2022. 2

[24] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2020. 2

[25] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon
Lee. Dataset distillation with infinitely wide convolutional
networks. NeurIPS, 2021. 2

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NeurIPS, 2017. 5

[27] Rahul Rahaman, Dipika Singhania, Alexandre Thiery, and
Angela Yao. A generalized and robust framework for times-
tamp supervision in temporal action segmentation. In ECCV,
2022. 2

[28] Alexander Richard, Hilde Kuehne, and Juergen Gall. Action
sets: Weakly supervised action segmentation without order-
ing constraints. In CVPR, 2018. 2

[29] Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc
Van Gool, and Rainer Stiefelhagen. Temporally-weighted
hierarchical clustering for unsupervised action segmentation.
In CVPR, 2021. 2

[30] Fadime Sener and Angela Yao. Unsupervised learning and
segmentation of complex activities from video. In CVPR,
2018. 2

[31] Yuhan Shen and Ehsan Elhamifar. Progress-aware online ac-
tion segmentation for egocentric procedural task videos. In
CVPR, 2024. 2

[32] Dipika Singhania, Rahul Rahaman, and Angela Yao. Iter-
ative contrast-classify for semi-supervised temporal action
segmentation. In AAAI, 2022. 2

[33] Sebastian Stein and Stephen J McKenna. Combining em-
bedded accelerometers with computer vision for recognizing
food preparation activities. In UbiComp, 2013. 5, 6

[34] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 8

[35] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by aligning
features. In CVPR, 2022. 1, 2

[36] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018. 1, 2

https://commoncrawl.org/about/
https://commoncrawl.org/about/

[37] Ziyu Wang, Yue Xu, Cewu Lu, and Yong-Lu Li. Dancing
with still images: Video distillation via static-dynamic dis-
entanglement. In CVPR, 2024. 1, 2

[38] Max Welling. Herding dynamical weights to learn. In ICML,
2009. 5, 6

[39] Fangqiu Yi, Hongyu Wen, and Tingting Jiang. Asformer:
Transformer for action segmentation. In BMVC, 2021. 2, 3,
5, 6, 7, 8

[40] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset dis-
tillation: A comprehensive review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023. 4

[41] David Junhao Zhang, Heng Wang, Chuhui Xue, Rui
Yan, Wenqing Zhang, Song Bai, and Mike Zheng Shou.
Dataset condensation via generative model. arXiv preprint
arXiv:2309.07698, 2023. 2

[42] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In ICML, 2021. 2

[43] Bo Zhao and Hakan Bilen. Dataset condensation with distri-
bution matching. In WACV, 2023. 1, 2

[44] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. arXiv preprint
arXiv:2006.05929, 2020. 2, 5

[45] Qing Zhong, Guodong Ding, and Angela Yao. Onlinetas: An
online baseline for temporal action segmentation. NeurIPS,
2024. 2

[46] Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset
distillation using neural feature regression. NeurIPS, 2022.
2

	. Introduction
	. Related Work
	. Dataset Condensation for TAS
	. Preliminaries
	. Task Formulation
	. Generative Feature & Temporal Condensation
	. Diverse Sequence Sampling
	. Decoding for TAS

	. Experiments
	. Datasets and Evaluation
	. Implementation
	. Effectiveness
	. Ablation and Hyper-parameter Study

	. Incremental Action Segmentation
	. Conclusion

