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Abstract—Vision-based person re-identification aims to match
a person’s identity across multiple images, which is a fundamental
task in multimedia content analysis and retrieval. Deep neural
networks have recently manifested great potential in this task.
However, a major bottleneck of existing supervised deep networks
is their reliance on large amount of annotated training data.
Manual labeling for person identities in large-scale surveillance
camera systems is quite challenging and incurs significant costs.
Some recent studies adopt generative model outputs as training
data augmentation.

To more effectively use this synthetic data for an improved
feature learning and re-identification performance, this work
proposes a novel Feature Affinity-based Pseudo Labeling (FAPL)
method with two possible label encodings. To the best of our
knowledge, this is the first study that employs pseudo-labeling
by measuring the affinity of unlabeled samples with the under-
lying clusters of labeled data samples using the intermediate
feature representations from deep networks. We propose to
train the network with the joint supervision of cross-entropy
loss together with a center regularization term, which not only
ensures discriminative feature representation learning but also
simultaneously predicts pseudo-labels for unlabeled data. We
show that both label encodings can be learned in a unified manner
and help improve the overall performance. Our extensive exper-
iments on three person re-identification datasets, Market-1501,
DukeMTMC-reID and CUHK03, demonstrate significant per-
formance boost over the state-of-the-art person re-identification
approaches.

Index Terms—pseudo-labeling, semi-supervised learning, per-
son re-identification, deep networks, generative modeling.

I. INTRODUCTION

Person re-identification is one of the basic yet challenging
visual understanding tasks in multimedia content analysis. It
has a wide range of applications including search and retrieval
[1], cross-camera tracking [2–4] and video summarization [5]
to name a few. Given a query image, it searches a gallery
set of images for detecting the instances of the same person
depicted in the query image. The gallery often contains images
acquired from different cameras, viewpoints, and modalities
at different time instances [6, 7]. This causes large intra-class
and small inter-class differences due to significant variations in
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illumination, object appearance, body posture, pose, imaging
noise, blur, and occlusions [8].

In recent years, deep Convolutional Neural Networks
(CNNs) have achieved remarkable success in person re-
identification [8–11]. However, CNN based methods are lim-
ited by the insufficient amount of data available for each
identity. Manual labeling is the main bottleneck for acquiring
large-scale annotations due to the tedious and labor-intensive
nature of the job. This problem is particularly more promi-
nent in the case of person re-identification as the labeling
involves manually selecting identities and associating images
from different cameras with varying viewpoints, illumination,
occlusions and body pose changes. This is evidenced by the
fact that even recent large-scale datasets, such as Market-1501
and DukeMTMC-reID which have been acquired specifically
for deep learning, still have very limited pedestrian images
per identity. For example, Market-1501 dataset has on average
17.2 training images for 751 identities. Furthermore, the num-
ber of images is unevenly distributed such that some identities
have as few as 2 samples, while only a few classes have more
than 20 images. Therefore, it is highly important to perform
intelligent data augmentation to extend the training set.

The emergence of Generative Adversarial Network (GAN)
[12] has partially addressed this problem as they can gen-
erate novel images with good perceptual quality. However,
a pressing issue is how to optimally use the synthetic data.
Pseudo-labeling is then proposed as a technique to produce
approximate labels for unlabeled data on the basis of labeled
data instead of manually labeling them. Initial efforts towards
this problem adopted simplistic approaches e.g., [13] created
a single new label for all generated images while [14] used
predictions from a pre-trained CNN model to label generated
images. More recently, [15, 16] proposed to use Label Smooth
Regularization (LSR) to assign pseudo-labels to synthetic data
samples. LSR was proposed decades ago and revisited recently
in [17] to reduce over-fitting by assigning small values (instead
of 0) to non-ground-truth classes for cross-entropy loss com-
putation. Specifically, [16] extends LSR to outliers (LSRO)
by assigning uniformly distributed virtual labels to generated
images from GAN networks. This choice was made to avoid
emphatically classifying generated samples into one of the
existing categories. Afterwards, [15] argued that generated
images have considerable visual differences and assigning
same labels to all would lead to ambiguous predictions. Thus,
they proposed to provide labels based on the rankings of
normalized class predictions (probability estimates) over all
pre-defined classes.
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One remarkable drawback of all existing pseudo labeling
approaches is that they are agnostic to underlying relationships
between an unlabeled and labeled data samples. The most
mature effort in this direction [15] performs label generation
based on class predictions that are solely dependent on the
input sample and neglect distance based affinity between
the unlabeled image and labeled examples. In this work,
we attempt to overcome this shortcoming by dynamically
associating unlabeled samples with pre-defined classes dur-
ing the training process. Inspired by the spirit of clustering
that leverages the underlying patterns within training data,
we propose a novel label assigning approach called Feature
Affinity based Pseudo Labeling (FAPL) which delivers sig-
nificant performance boost in person re-identification. FAPL
aggregates labeled data samples that belong to the same class
into refined clusters and simultaneously provides pseudo-labels
to unlabeled data samples based on their similarity with each
cluster center in the feature space. Building upon feature
affinities, we propose two possible labeling schemes i.e., one-
hot pseudo-label based on non-maximum suppression and
distributed pseudo-label for soft label assignment. The former
is easier to implement and train, while the later one performs
better in our evaluations.

Another observation that shed light on our work is that
despite the one-hot and distributed label encodings derived
from probability predictions have been proposed separately for
unlabeled data, they fail to be combined together in a unified
architecture. Previous efforts only considered unitary encod-
ing, either one-hot or distributed. Specifically, [13, 14, 18]
chose one-hot labels for unlabeled data, while [15, 16] adopted
distributed labels. The reason behind this situation is that
the guarantee of a valid network training procedure is effec-
tive weight gradients, however, using probability predictions
directly as distributed labels can not provide any weight
corrections. [15] is a workaround proposing to assign labels
based on probability rankings which is somehow effective but
inescapably introduces errors. In this work, we endeavor to
address this problem by introducing feature affinities. Feature
affinity itself is not reverent to any class probability, granting
its ability to produce pseudo-label with both encodings in a
unified way while ensuring effective learning process.

Considering the recent progress in adversarial networks, we
also study the effect of using better generative models for
pseudo-labeling. Several efforts have recently been devoted to
enhance the visual quality of synthetic images and stabilize the
model training process [12, 14, 19–23]. For this purpose, better
loss functions have been explored as well as novel network
configurations to generate realistic images. The use of extra
information was investigated in Conditional GAN [19], where
both generator and discriminator are conditioned on extra
information, such as class labels, to improve the visual quality
of generated samples. In this work, alongside DCGAN, we
further experiment with the recent improved Wasserstein GAN
(IWGAN) model which avoids modal collapse and generates
high-quality samples with better convergence properties. The
WGAN [22] is based on the Wasserstein distance measure
as adversarial training loss function which is better suited to
depict distances between distributions. Our experiments show

that training with higher-quality images helps improve the re-
identification performance.

The main contributions of this work are summarized as
follows:
• A multi-task loss formulation is proposed for semi-

supervised learning which has two advantages. First,
it jointly considers inter-class and intra-class variations
in feature space for more discriminative representation
learning. Second, it can simultaneously estimate pseudo-
labels for unlabeled data.

• We first propose to consider feature affinities between
GAN generated samples and labeled data rather than
prediction probabilities to estimate pseudo-labels with
two possible encodings. Besides, both encodings can be
generated uniformly based on feature affinities.

• Our experiments on three standard person re-
identification benchmarks demonstrate that the proposed
method achieves significant improvements over other
pseudo-labeling approaches and also outperforms the
best performing methods in most comparison cases.

The remainder of this paper is organized as follows. A
review of related works is provided in Section II. Section III
presents background knowledge on pseudo-labeling technique.
In Section IV, we provide details of our proposed feature
affinity based pseudo-labeling approach followed by a dis-
cussion on why FAPL works better. Section V exhibits the
effectiveness of proposed methods on three standard person re-
identification benchmarks and provides an extensive ablation
study. We conclude our work in Section VI.

II. RELATED WORK

In this section, we discuss the relevant works on semi-
supervised learning and person re-identification with deep
network architectures, respectively.

A. Semi-supervised Learning

Semi-supervised learning uses both labeled and unlabeled
data to improve performance on a given task. It is driven
by its practical value in learning faster, cheaper, and better
feature representations. In many real world applications, it is
relatively easier to acquire a large amount of unlabeled data.
Semi-supervised learning seeks to train a model that can make
more accurate predictions on future unseen test data compared
to a model learned only from labeled training data. Plenty of
approaches have been proposed in the literature for this setting.
Common semi-supervised learning methods include variants of
generative models [24], graph Laplacian based methods [25],
co-training [26], and multi-view learning [27]. Above works in
semi-supervised learning are based on the fact that sufficient
unlabeled data is available. However, collecting unlabeled
data is also cumbersome in some applications. After the
emergence of Generative Adversarial Network (GAN) [12],
a branch of research on semi-supervised leaning has shifted
to exploring GAN generated images [13, 14]. This work,
incorporates unlabeled samples generated by GAN alongside
the real samples available in the labeled datasets.
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B. Person re-identification

Person re-identification aims at matching captured person
images from different camera installations that belong to the
same identity. Main efforts in this area can be divided into two
categories: (a) metric learning and (b) feature representation
learning. Metric learning usually takes input in the form of
image pairs or triplets and learns a similarity metric using
pairwise or triplet loss [28–30]. [30] proposes to use deep
networks to learn a similarity metric directly from image pixel,
sparing the trouble of feature crafting and engineering. [28]
divides feature representations into four parts which are later
concatenated for final triplet loss calculation. Metric learning
has shown its great effectiveness in person re-identification,
however, this stream of work suffers from huge data expansion
when constituting image pairs and triplets especially when
applied to large-scale datasets. [31] uses a part-based CNN to
extract discriminative and stable feature representations and
proposes a novel set-to-set (S2S) loss for similarity learning
which ensures large margin between inter-class and intra-class
set.

The other type of works focuses on feature learning, ad-
dressing this task in the form of classification. Common
practices include first training a pedestrian identity predicting
model and then extract last fully connected layer activations
as pedestrian descriptor for retrieval during testing [8, 29, 32–
34]. Amongst these, [33] proposes to feed global information
into previous layer for a compact feature representation, [16]
demonstrates that the use of DCGAN generated samples to
enlarge the training set helps achieve a boost in performance.
They propose a label smoothing regularization for unlabeled
samples (called LSRO) to assign a distributed pseudo-label. A
major drawback of their approach is the underlying assumption
that the synthetic data does not belong to any class, therefore
considering a uniform distribution for all unlabeled samples.
Our work aims to address this limitation and proposes a
novel loss function that automatically discovers patterns in the
unlabeled data.

III. BACKGROUND ON PSEUDO-LABELING

Manually labeling generated person images is impractical
as the image quality can not be assured which would take
huge effort to judge which identity it belongs to due to the
variations in appearances. Thus, pseudo-labeling for generated
pedestrian images becomes central. As mentioned above, there
have been work adopting GANs to generate samples as a data
augmentation solution in the field of person re-identification
and investigating to find the optimal labeling scheme.

Existing pseudo-labeling approaches are depicted in Fig. 1
and summarized as follows:

• All-in-one [13, 14]. As illustrated in Fig. 1(a), all-in-
one seeks the easiest solution to assign labels. It simply
introduces an extra new class and directly groups all
unlabeled data into it without considering any variations
which may exist between all generated images. Unlabeled
data are trained with this fixed new class label throughout
the training procedure.

(a) All-in-one
(b) One-hot (c) Distributed

Fig. 1: Existing pseudo-labeling approaches can be divided
into above three categories. From left to right are: All-in-
one, One-hot and Distributed. All-in-one adds a new class
label for all unlabeled data. One-hot assigns each unlabeled
data a dynamic class label in each training epoch. Distributed
considers contributions while labeling unlabeled data.

• One-hot [18]. On the basis of all-in-one, One-hot takes
into consideration the intra-variations within all generated
image and proposes to assume that each sample belongs
to an existing class. Pseudo-labels are assigned by taking
the maximum value for the probability prediction for each
class shown as Fig. 1(b). One-hot label is identical in
its form to ground-truth label, thus this pseudo-labeling
scheme is easy to train. Note that as the training proceeds,
pseudo-labels for the same image can be different as the
predictions might change.

• Distributed [16], [15]. This type of pseudo-labeling
further extends one-hot labeling scheme, and considers
that the label for an unlabeled data should be distributed
like displayed in Fig. 1(c). Since GAN generated images
are fake samples drawn from the real data manifold,
it would be inaccurate to classify them into any single
class. Based on this assumption, [16] proposed to give
equally distributed labels i.e., qi = 1/K, i = 1, 2, ...,K
in LSRO. In contrast, MpRL [15] assigns distributed
labels according to class prediction ranks considering
the class contributions. Distributed pseudo-labels together
with real labels are trained with cross-entropy loss.

One proven ability of GAN is that it can generate samples
from the training data distribution without strictly modeling
it. In other words, GAN generated images can be seen as
samples drawn from the labeled set. Thus, pseudo-labeling
for generated images on the basis of labeled samples is more
natural. However, none of existing pseudo-labeling methods
takes into account the innate relations between labeled and
unlabeled data to improve the feature representation learning
under the semi-supervised framework. In contrast, this work
aims to address this limitation and propose a novel loss
function that automatically discovers patterns in the unlabeled
data by associating them to labeled data samples. Next, we
describe our semi-supervised learning approach based on
pseudo-labeling.
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IV. THE PROPOSED APPROACH

A. Overview

Despite the fact that generated data samples from GAN
are unlabeled, they can be used alongside the labeled ex-
amples to improve the learned features representations in a
semi-supervised setting. We propose to take into account the
underlying patterns in the labeled data and leverage those
to infer pseudo-labels for unlabeled data. To this end, we
introduce a new multi-task learning objective for the semi-
supervised training together with two new labeling schemes.
The multi-task objective comprises of a normal classification
loss and a center regularization term. The classification loss
seeks to learn a ID-discriminative Embedding (IDE) for each
pedestrian [35]. The center regularization term improves the
discriminative ability of feature embedding and simultaneously
predict pseudo-labels for generated samples.

The overall network architecture is illustrated in Fig. 2. The
upper row denotes the training procedure of semi-supervised
learning with synthetic images generated through GAN. It
consists of two main modules. The first module on the left
is the image generation module, where a generative model is
optimized using adversarial training to estimate the data dis-
tribution based on existing real samples (e.g., labeled images
from training set). The generator is trained to create samples
that pass the discriminator test, whilst the discriminator is
trained to separate fake samples from real ones. Afterwards,
the trained generator is used to obtain large amounts of syn-
thetic image samples lying on the approximated data manifold
for subsequent training. The second module takes as input
the generated data samples which are unlabeled. This module
uses the unlabeled data samples alongside the labeled ones
to learn feature representations with the joint supervision of
classification and a center regularization term. The bottom row
shows the testing phase, where activations output from the
convolutional neural network (CNN) are used as pedestrian
descriptors for a Euclidean distance based retrieval operation.

The objective function (illustrated in Fig. 2) of our proposed
approach can be expressed as:

L = LS + λLC , (1)

where LS and LC respectively denote classification loss and
center loss, and λ is a trade-off parameter to balance the
contribution of each component. We describe the motivation
for the two loss terms in the following.

B. Classification Loss

Conventional supervised classification training requires
image-label pairs, while labels are unavailable for generated
data from a GAN model. In order to use the synthetic data
for training, we propose two schemes to provide pseudo-
labels for unlabeled data. Our empirical results show that both
approaches improve the person re-identification performance.
We first provide notations and brief background and then
elaborate on the approaches.

For a single input image, the convolutional neural network
calculates its feature representation x and output for k-th pre-

defined class yk, where y = WTx+ b. Its estimated softmax
probability to be classified into class k can thus be given by:

p(yk) =
eyk−ymax∑K
j=1 e

yj−ymax

, s.t., k ∈ [1,K], (2)

where ymax represents the maximum response in y, K is the
number of pre-defined classes i.e., pedestrian identities in re-
ID task.

1) One-hot label: One simple strategy is to assign a one-
hot pseudo-label same as the real label following Fig. 1(b).
Referring to the clustering criterion and considering the simi-
larity between GAN generated and real image representations,
we propose a straightforward yet effective solution to associate
an unlabeled data sample to the most similar class.

The similarity between an input data representation in
feature space x and center ck for class k is formulated as
below:

sim(x, ck) =
x · ck
‖x‖‖ck‖

(3)

where ck is the class specific anchor in the feature space and
updated on the fly, whose detailed introduction can be found
in Sec. IV-C. Pseudo-label ` for x is defined using the above
mentioned similarity metric as follows:

` = arg max
k

sim(x, ck) (4)

One advantage of one-hot pseudo-labeling is that it is
consistent with ground truth labels, which enables unlabeled
data to be integrated with labeled data for training without
a separate training procedure with different loss formulation.
They can be trained by following categorical loss function:

LS = − log(p(y`)) (5)

= −(y` − ymax) + log(

K∑
j=1

eyj−ymax)

The backward gradients can be written as:

L
′

S =
ey`−ymax∑K
j=1 e

yj−ymax

− 1. (6)

2) Distributed label: The synthetic images generated by the
GAN are random samples drawn from the approximated data
manifold. Due to the complexity of high dimensional visual
data, the pedestrian samples generated by GAN can have vague
or absurd appearances and body shapes. These badly generated
images succeed to pass the discriminator test yet they are
easily distinguishable from the true samples when inspected
by a human. Hence, it is inappropriate for an optimal learning
procedure to arbitrarily consider these images to belong to
an existing identity and assign a one-hot label as discussed
above. To this end, we propose to treat single unlabeled data
approximately as a weighted combination of representations
from different classes. This scheme is illustrated in Fig. 1(c)

Accordingly, the final distributed label q(y) is defined by a
softmax function on the similarities between x and all cluster
centers c, formulated as follows:

q(yk) =
esim(x,ck)∑K
j=1 e

sim(x,cj)
, (7)
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Fig. 2: The overall workflow of semi-supervised person
re-identification. The top half denotes the training pro-
cedure while the bottom denotes the testing phase. Left
part of training denoted as image generation consists
of a GAN network that has one generator network and
one discriminator network. The former takes in as input
some random noise and outputs a generated sample.
The discriminator tries to distinguish generated from real
samples. The right half demonstrates the semi-supervised
training on a CNN architecture with our proposed multi-
task loss (dashed boxes). Center loss performs clustering
of unlabeled data in feature space and simultaneously
outputs pseudo-labels for them. During testing, we extract
CNN output x as the pedestrian descriptor for both query
and gallery images. Similar images are retrieved and
ranked according to their descriptor similarity.

Distributed pseudo-label can thus be interpreted as the proba-
bilities of unlabeled data belonging to each class. As suggested
in [17], cross-entropy function can be used to train with
distributed pseudo-label, for a single input, its classification
loss is calculated as:

LS = −
K∑

k=1

q(yk) log(p(yk)) (8)

= −
K∑

k=1

q(yk)(yk − ymax) + q(yk) log(

K∑
j=1

eyj−ymax)

The corresponding gradients are written as:

L
′

S = q(yk)
eyk−ymax∑K
j=1 e

yj−ymax

− q(yk) (9)

Specifically, if we constrain q(yk) to satisfy:

q(yk) =

{
1 k = `,

0 k 6= `.

and plug it in Eq. 8 and Eq. 9, we can obtain Eq. 5 and
Eq. 6, respectively. This means distributed pseudo-labeling
scheme is a generalization of one-hot pseudo-labels, and both
encodings derived from feature affinity can be used for training
in a unified architecture with the original cross-entropy loss
function.

C. Center Regularization

In addition to previous classification loss, we impose an
extra center regularization term from [36]. This term associates
each unlabeled sample to its matching cluster center in the
feature space. It discovers underlying patterns in the feature
space via center based clustering and thus performs intelligent
data augmentation. We formulate the center regularization loss
for a batch of m image feature representations {xi ∈ Rd}m1
as follows:

LC =
1

2

m∑
i=1

‖xi − c`i‖22 (10)

where cli ∈ Rd is the center with dimension d of the cluster
that xi belongs to. For the case where an unlabeled data with
distributed pseudo-label is being processed, cli is selected
using Eq. 4 for simplicity. This center regularization term is
applied to (a) prevent large intra-class variations which can not
be addressed by classification loss alone, (b) obtain centers of
all categories which in turn help decide the label for unlabeled
data, whether one-hot or distributed.

When losses are obtained, the backward gradients with
respect to xi can be calculated by:

L′C = xi − c`i (11)

Next, the cluster centers are updated using the following
equation:

∆ck =

∑m
i=1 δ(xi ∈ xL) · δ(`i = k) · (ck − xi)

1 +
∑m

i=1 δ(xi ∈ xL) · δ(`i = k)
(12)

where xL is the set of labeled training data, and δ denotes
delta function i.e., δ(condition) = 1 if condition is satisfied,
and otherwise 0.

We train network with three notable modifications: (a)
Instead of taking the entire training set into account, centers
are updated based on mini-batches. (b) Only labeled samples
in mini-batches are allowed to update class centers which
proves to help stabilize the center constitution procedure since
the pseudo-label may change dramatically for a same input
between different training epochs. (c) The regularization loss
is only back-propagated to labeled samples within each mini-
batch.

The overall loss from Eq. 1 for a batch of input samples for
both one-hot and distributed pseudo-labeling approaches can
be rewritten uniformly as follows:

L = LS + λLC

= −
m∑
i=1

K∑
k=1

q(yik) log(p(yik)) +
λ

2

m∑
i=1

‖xi − c`i‖22
(13)

where yik represents yk for i-th input image.
The complete semi-supervised feature learning procedure is

presented as Algorithm 1.
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Algorithm 1: The semi-supervised feature learning with
proposed pseudo-labeling approach

Input: labeled data: L, unlabeled generated data: U ,
maximum iteration: T , batch size: m, center
update rate: α, trader-off parameter: λ, network
parameters: θ

Output: Optimized parameters θ̂
Initialization: Training set X = L ∪ U , Initialize θ with
pre-trained ResNet-50, α = 0.5, λ = 10−4, class centers
{ck = 0|k = 1, 2, ...,K}

1 for t = 1 : T do
Shuffle X and sample m samples to form a mini

batch Xt;
Feed forward Xt through CNN to obtain their feature
representations xt;

for xt
i ∈ U do

Calculate sim(xt
i, ck) using Eq. (3);

Generate pseudo label `xt
i

for xt
i, one-hot with

Eq. 4 or distributed with Eq.7.
Compute the joint loss Lt using xt with Eq. (13);
if xt

i ∈ L then
Update class center ct with Eq. 12:
ct = ct−1 + α∆ct.

Backward propagation;
Update the parameter set θt;

2 return: θ̂ = θT

D. Discussion

In this section, we study the interesting properties of our
proposed method and compare it with existing works.

1) Feature Similarity vs Class Predictions: One significant
difference between ours and all previous works on pseudo-
labels generation is that this work is the first to propose
assignment of pseudo-labels based on feature representation
similarity in feature space.

One common practice of deep re-id works is that they first
train an identity classification network and then extract last
fully connected layer activations as the final descriptor to
perform similarity calculation during the subsequent testing
phase. Previous works such as [15, 18] calculate pseudo-labels
based on classification prediction probability. The network
predictions can be directly used for one-hot pseudo-labeling
[18] if the class with maximum probability response is used
as a label for training. However, probability fails in the case
of distributed labels since pseudo-labels would be identical to
class probability predictions which will resultantly not produce
any weight corrections based on back-propagated gradients.
Therefore, [15] proposed to rank the predicted probabilities
and assign labels based on the ranking, which inevitably
introduces inaccuracies. On the contrary, we propose to re-
gard pseudo-label generation itself as a retrieval process with
unlabeled data as query and labeled data as gallery based
on representation similarity, which is identical to the final
retrieval performed in person re-identification. In this way, the
similarity based labeling scheme can derive pseudo-labels in

Fig. 3: This figure illustrates the distributions of different
samples in the feature space before and after the center loss
is imposed. Circles with different colors (e.g. red and black)
stand for feature representations of real (labeled) samples form
different categories. Blue triangles represent GAN generated
fake (unlabeled) data. Generated data samples are denoted 1-6
from top to bottom. The filled color of each triangle denotes
class label predicted under each case. Cross in each dashed
circle denotes the center of that class. (Best viewed in color.)

both one-hot and distributed cases.
2) Why centers matter?: The contributions of center reg-

ularization term are two-fold: (a) It promotes learning more
discriminative feature representations for labeled data. Con-
ventional classification loss only considers classifying samples
correctly, the resulting deeply learned features therefore con-
tain large intra-class variations. [36] proposed a center loss
jointly with the softmax loss to improve the discriminative
power of the deeply learned features by reducing intra-class
variations. (b) It produces pseudo-labels for unlabeled data
considering their relationships with the labeled data. This is
an intuitive consideration because one can assume that the
generated samples of a class are close to original ones. In
contrast, previous works such as [18] and [15] inappropriately
label the data with predicted probabilities and do not take into
account their inherent relationships with the labeled data.

A toy example can be introduced to help illustrate above
points. Left part in Fig. 3 shows a classification performed on
a two-class (black and red) data set only with softmax loss.
Unlabeled data samples (shown as blue triangles) are scattered
around the boundary between two classes. Probability based
labeling methods like [18] can be roughly seen as a nearest
neighbor search. Sample 1 and 3 have as closest neighbor
red points. Therefore, they are labeled red despite the fact in
feature space they are more inclined towards black. Similar
argument stands for data samples 2 and 4 being wrongly
classified black. The right part is the labeling result after center
loss is imposed. It is noticeable that less intra-class variations
are introduced and unlabeled samples are more adequately
classified considering the feature representation centers rather
than the nearest neighbors.

3) Comparison with close work: The overall comparison of
our approach with the closely related methods is summarized
in Table I. We denote our two schemes as FAPL-o (one-hot)
and FAPL-d (distributed), respectively. Existing strategies for
labeling GAN data in person re-identification include all-in-
one [13, 14], one-hot [18], LSRO [16] and dMpRL [15]. Their
label distributions can be illustrated by Fig. 1(a), Fig. 1(b)
and Fig. 1(c), respectively. Both LSRO and dMpRL adopts
distributed labels, the difference is that LSRO selects uniform
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TABLE I: Comparison with closely related work from differ-
ent aspects.

Method
Label

Assignment
Label

Distribution
Label

Source
Contributions on

Pre-defined Classes
All-in-one[13] static one-hot Manual -
One-hot[18] dynamic one-hot probability -
LSRO[16] static distributed Manual same
MpRL[15] dynamic distributed probability different
FAPL-o dynamic one-hot similarity -
FAPL-d dynamic distributed similarity different

distribution while dMpRL considers ranking contributions.
Compared with [13, 16] which directly assign fixed and

identical labels for all generated data, our proposed model
considers the variations in-between them and dynamically pre-
dicts pseudo-labels in each iteration as the training progresses.
[15, 18] assign labels dynamically, both of which adopt class
probability predictions rather than feature similarity to assign
labels. We propose to take advantage of feature similarities in
the feature space and predict labels accordingly. Our experi-
ments show that compared to the rigid one-hot class labels,
distributed probability labels are more flexible and resilient.

In summary, our proposed approach enjoys the benefits of
being more flexible, discriminative and aware of wide context
in the feature space. As a result, it leads to better performance
as evidenced through the reported quantitative comparisons in
Section V.

V. EXPERIMENTS

In this section, we perform experiments on three widely
adopted person re-identification datasets to evaluate the effec-
tiveness of our proposed approach.

A. Datasets and Evaluation Protocol.

Market-1501 is a large-scale person re-identification dataset
collected from 8 cameras on Tsinghua campus. In total it
contains 12,936 images for training and 19,732 for testing,
and the number of person identities for training and testing are
751 and 750, respectively. Overall, each identity in training
set has 17.2 images on average. All pedestrian images are
automatically detected by Deformable Parts Model (DPM)
[37].

DukeMTMC-reID derives from a large multi-target, multi-
camera pedestrian tracking dataset [38] and released by [16].
Pedestrian images in this dataset are captured by 8 cameras
with hand-labeled bounding boxes. It comprises of 1,404
identities in which 702 are selected as training set and the
rest 702 are used for testing. The training set contains 16,522
images which leads to an average of 23.5 images per training
identity. The query set has 2,228 images of 702 identities from
one camera to retrieve from the gallery with 17,661 images.

CUHK03 dataset is captured on the CUHK campus which
contains 14,097 images of 1,467 identities. Two subsets are
provided. One is hand-drawn annotated images and the other
is detected by DPM [37]. We chose to use the detected set
in our experiment. 9.6 images are obtained per identity in the
training set. Since no standard training/test split protocol are
provided, averaged results for 10 training/testing are reported.

Evaluation Metrics. We evaluate our method with rank-
1 accuracy and mean average precision (mAP) on all three
datasets. The rank-i accuracy denotes the rate at which one or
more correctly matched images appear in top-i ranked images.
The mAP value reflects the overall precision and recall rates,
thus providing a more comprehensive evaluation metric.

B. Implementation Details
Re-id Baseline. In our experiments, we adopt the standard

ResNet-50 proposed in [39] as the backbone architecture for
our proposed approach. This network architecture has been
used to evaluate closely related pseudo-labeling approaches,
such as all-in-one[14], one-hot[18], and LSRO[16]. No other
changes were made to the architecture for training expect
for substituting the last 1000 class activation neurons to
target identity number, i.e., 751 and 702 for Market-1501 and
DukeMTMC-reID, respectively. We first resize all training im-
ages to be 256×256 followed by a random horizontal flipping
and cropping to the input size 224×224. A dropout layer with
0.75 drop rate is inserted just before the final convolutional
layer to prevent over-fitting for all datasets. The whole model
is optimized by Stochastic Gradient Descent (SGD) with 0.9
momentum. The learning rate is set to 0.001 for 40 epochs
and decayed to 0.0001 for another 10 epochs. During testing,
last FC-layer with 2048-dim activations are extracted as the
pedestrian descriptor for a cosine similarity based ranking. The
network is implemented with the Matconvnet [40] package.

GAN Models. For fair comparison, we follow the training
procedure in [16] and adopt DCGAN [21] as our model to
generate fake unlabeled pedestrian images aiming at enlarging
the training set. A 100-dim random is provided as the input
to the generator, which is enlarged to form a 4×4×16
tensor by a linear function, followed by the application of
6 deconvolutional layers in total with 5 × 5 sized kernels
to obtain the desired 128×128×3 image. The discriminator
has 5 convolutional layers with 5×5 kernels to perform a
binary classification task to separate real and fake samples
from the given images. After the network is trained, we
use the generator to produce up to 36,000 synthetic images.
All synthetic data samples are resized to 256 × 256 for the
following semi-supervised learning. Some generated data sam-
ples are displayed in Fig. 4, although some of the generated
images are far from the actual data distribution, they still help
regularize the model and improve performance. We present
our experimental results in Section V-C.

Feature Extraction. We use ResNet-50 as the backbone
network with our proposed loss formulation for feature learn-
ing. As a result, for an input image, the last layer activations
from ResNet-50 are extracted as the pedestrian descriptor for
retrieval. When tested on a NVIDIA TITAN Xp card, a single
forward pass approximately takes 40 ms. Notably, when we
use a batch of 100 inputs, the average extraction time for a
single image is further reduced to 3ms.

C. Evaluation
1) The effectiveness of proposed approach: Our overall

results are summarized in Table II. As shown, with the ResNet-
50 as backbone architecture, the baseline achieved 72.74%,
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TABLE II: Comparison with current state-of-the-art pseudo-
labeling methods for person re-identification, namely, LSRO
and MdRL on Market-1501 and DukeMTMC-reID datasets.
24,000 generated data are incorporated for training.

Methods Market-1501 DukeMTMC-reID
rank-1 mAP rank-1 mAP

Baseline 72.74 50.99 65.22 44.99
LSRO[16] 78.21 56.33 67.68 47.13
dMpRL-II[15] 80.37 58.59 68.24 48.58
FAPL-o (Ours) 82.04 61.26 70.92 51.99
FAPL-d (Ours) 83.43 63.23 71.90 52.25

65.22% rank-1 accuracy and 50.99%, 44.99% in mAP on
Market-1501 and DukeMTMC-reID, respectively. We observe
that the performance on DukeMTMC-reID is relatively lower
than that on Market-1501, which is due to the heavy occlusions
in the Duke dataset which makes the identification task more
challenging. The goal here is to study the performance trend on
the two datasets in comparison to other state of the art pseudo-
labeling approaches. In this experiment, we randomly selected
24,000 generated images for two datasets as auxiliary data for
training, and observed that both schemes lead to significant
performance improvements over baseline. Rank-1 accuracy on
Market-1501 increased by a margin of 9.30% and 10.69% for
two schemes, respectively. mAP also enjoyed an increase from
50.99% to 61.26% and 63.23%. Similar trend is observed on
DukeMTMC-reID with an overall improvement of 6.19% in
rank-1 accuracy and 7.13% in mAP.

2) Amount of unlabeled data: We use DCGAN to generate
up to 36,000 images, from which we randomly pick subsets
to evaluate how the total number of synthetic images incor-
porated for training influence the re-ID performance. Results
are displayed in Table III. For our two labeling schemes,
considerable performance increase in both rank-1 accuracy
(9.38%, 10.69%) and mAP (11.32%, 12.24%) metrics was
observed over baseline. However, an increase in the amount of
unlabeled images above a threshold (i.e., from 12000 to 36000)
failed to demonstrate considerable boost in performance and
the final result fluctuates around 82% for one-hot and 83%
for distributed, respectively. Similar trend is observed amongst
all other pseudo-labeling methods. We speculate that this
phenomenon is due to the inherent representation ability of
generated images. These images are sampled from a specific
learned distribution (manifold of real data), therefore simply
increasing sample numbers does not provide any additional
information to the model that benefits the final retrieval task.

3) Amount of labeled data: It is desirable to learn better
representation with less amount of labeled data. To test our
approach when labeled data is extremely limited, we perform
experiments on a reduced training set where available labeled
examples are roughly cut to half and one third of the total
amount. We follow the following rules when composing these
subsets: (a) Keep all samples for identities with less than 8
images; (b) Keep half or one-third samples form identities
with more than 8 images and discard rest. We then obtain half
subset with 7,106 training images and one-third subset with
4,200 training images. Results can be found in Table IV. One
noticeable fact is that when less labeled data is used, more

unlabeled data is needed to achieve best performance. Also,
with labeled data reduced to a half and a third, performance
dropped for the case of baseline model, from 72.74% to
66.98% and 57.45% in rank-1 accuracy, respectively. This
result is expected since less supervision is provided when
training set is reduced. However, with our approach, we can
observe an improvement of around 10% in rank-1 and 11% in
mAP over baseline for all rows. Specifically, with unlabeled
data, the half model (rank-1= ∼77%, mAP=55%) managed
to outperform the fully-supervised baseline (rank-1=72.74%,
mAP=50.99%) by a significant margin of 5%. Also note that
the bottom line of subset third, unlabeled (36,000) images
are roughly 8.5 times larger than labeled (4,200) in amount,
our model still performs best (rank-1=67.87%, mAP=43.54%),
which is a promising result showing that our approach can be
applied on much smaller datasets.

4) Parameter sensitivity: We also conduct experiments
studying the sensitivity of the trade-off parameter λ in Eq.
13, whose results are presented in Table V. λ is by default set
to 10−4 in our experiments. We tried other settings for this
parameter (such as 10−3 and 10−5) and noticed a decrease
in the performance of both one-hot and distributed labeling.
For one-hot scheme, rank-1 accuracy dropped from 82.04%
to 80.82% and 81.18% and mAP from 61.26% to 60.24%
and 59.42%, respectively. Similar trend was observed on
distributed labeling. Our empirical analysis is that the choice
of lambda used in our experiments roughly makes both loss
terms comparable.

(a) Real

(b) DCGAN

(c) IWGAN

Fig. 4: Examples of real and fake generated images on Market-
1501. (a) The top row shows the real pedestrian samples
from training set. (b) The middle row shows generated images
from DCGAN, the visual quality is relatively low from the
perspectively of a human viewer, but they can help regularize
the model. (c) The bottom row shows the generated images
from IWGAN. Better visual qualities in human body shape
and clothing can be observed.
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TABLE III: Rank-1 accuracy (%) and mAP (%) on Market-1501 dataset with varying numbers of unlabeled training data. Best
results amongst approaches are in bold whilst best results for each method with different number of unlabeled data samples
are underlined.

# GAN images
All-in-one [13, 14] One-hot [18] LSRO [16] sMpRL [15] dMpRL-I [15] dMpRL-II [15] FAPL-o(Ours) FAPL-d(Ours)
rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP

0 (baseline) 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99 72.74 50.99
12000 76.96 55.68 76.52 55.69 77.17 55.22 77.73 55.27 77.88 55.84 79.22 58.14 81.38 60.31 83.28 61.68
18000 77.40 55.59 77.95 55.04 76.96 55.28 77.73 55.05 78.36 56.21 79.81 58.31 82.10 62.31 83.16 62.38
24000 77.21 56.07 77.62 56.90 78.21 56.33 78.85 55.59 77.79 56.10 80.37 58.59 82.04 61.26 83.43 63.23
30000 77.17 56.19 77.95 56.54 77.46 55.40 77.82 55.76 78.65 57.15 79.16 57.69 82.10 61.42 83.02 62.41
36000 75.92 55.24 77.42 56.38 77.91 55.82 78.32 55.45 78.95 57.42 79.90 57.61 82.12 60.70 82.30 61.92

Perf. boost 4.66 5.20 5.21 5.91 5.47 5.34 6.11 4.77 6.21 6.43 7.63 7.60 9.38 11.32 10.69 12.24

TABLE IV: Results on Market1501 dataset with reduced
labeled data subsets. This is trained with distributed pseudo-
labels. Best performance for each reduction case is shown in
bold.

number of images All half third
rank-1 mAP rank-1 mAP rank-1 mAP

0(baseline) 72.74 50.99 66.98 43.71 57.45 33.22
12000 83.28 61.68 76.81 54.25 66.39 42.87
18000 82.16 61.68 77.02 54.48 65.23 41.22
24000 83.43 62.23 77.46 55.26 66.48 42.04
30000 83.02 62.41 78.59 56.50 66.69 43.50
36000 82.30 61.92 78.15 56.30 67.87 43.54

TABLE V: Sensitivity analysis for the trade-off parameter λ
balancing the contributions of classification loss and center
loss. Experiments are performed on Market-1501 with 24,000

lambda one-hot Distributed
rank-1 mAP rank-1 mAP

0.001 80.82 60.42 81.05 61.18
0.0001 82.04 61.26 83.43 63.23
0.00001 81.18 59.42 82.31 62.31

5) Unlabeled data with different visual quality: To bet-
ter discover the effects that generated images with different
quality has on regularizing the model, we select a state-of-
the-art GAN model to perform our evaluation. We choose
the recently proposed Improved Wasserstein GAN (IWGAN)
[23] for image generation. IWGAN has strong theoretical
guarantees compared to DCGAN due to the use of Wasserstein
distance measure as an adversarial training loss which provides
faster and more stable convergence.

For the generator, we draw a 128-dim random noise vector
and use five 3 × 3 residual (with skip connections) deconvo-
lution layers to up-sample it to obtain 128 × 128 × 4 feature
maps followed by another 3× 3 convolution layer to generate
the final 128× 128× 3 output sample. A discriminator takes
as input 128 × 128 × 3 images and passes it first through a
convolution layer to obtain a 128 × 128 × 64 intermediate
presentation and then through another five residual down-
sampling convolution layer to a 8192-dim representation fol-
lowed by a binary classification similar to DCGAN to predict
whether the input is real or fake. Similar to DCGAN image
generation, output images are resized to 256 × 256 for our
model training.

We compare generated samples form both GAN networks
in Fig. 4. One can notice that the generated images from both

DCGAN and IWGAN are not comparable with real images,
but it is clear that the IWGAN images shown in the bottom
row are visually better than DCGAN images shown in the
middle row. DCGAN generated images have less diversity,
contain considerable distortions as well as ambiguous limbs
and body shapes. On the contrary, IWGAN better preserves
human body shape and can generate more realistic samples
with large color variations in clothing.

For each generation method, we randomly select varying
numbers of fake images as an addition to our real training
set and report results in Table VI. On Market-1501, under
the same one-hot pseudo-labeling setting, DCGAN achieved
81.38% in rank-1 while IWGAN achieved 82.84%. In com-
parison, on DukeMTMC-reID, a maximum of 1.48% rank-1
accuracy increase is observed when 12,000 samples are used in
the distributed setting. Overall, two conclusions can be drawn
from this experiment: (a) When better visual quality synthetic
images are used from an improved GAN model, the perfor-
mance across both datasets is further boosted by a margin
of 0.5%-1%. This improvement is relatively small because
sufficient samples from both models are considered which
reduces the impact of bad quality samples. (b) Distributed
pseudo-labeling approach consistently outperforms the one-hot
approach no matter which GAN model is adopted.

6) Comparison with other pseudo-labeling approaches:
In this section, we compare the proposed approach with
all four existing pseudo-labeling methods that we are aware
of on Market-1501 dataset. The compared pseudo-labeling
methods include all-in-one[13, 14], one-hot[18], LSRO[16]
and MpRL[15].

Among all published works, LSRO[16] is the state-of-art
proposing to assign uniformly distributed pseudo-labels for
unlabeled data to regularize the model. While MpRL[27] is
a very recent work by improving the distribution by con-
sidering class contributions and achieves very competitive
results. Three different implementations, sMpRL, dMpRL-I
and dMpRL-II, are provided in [15]. More specifically, the
first sMpRL assigned fixed distributed labels throughout the
whole training process, this is similar to LSRO except for class
contributions are considered when labels are produced. Both
dMpRL-I and dMpRL-II dynamically assign pseudo-labels to
each generated samples, but differ in when unlabeled data are
used for training. Generated data are used from the start point
of training in dMpRL-I, while used after 20 epochs in dMpRL-
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TABLE VI: Rank-1 accuracy (%) and mAP (%) results on Market-1501 and DukeMTMC-reID datasets when two GAN
models, DCGAN and IWGAN, are adopted for unlabeled image generation. For each dataset, best performance for one-hot
and distributed schemes are underlined and in bold, respectively.

# GAN images

Market-1501 DukeMTMC-reID
DCGAN [21] IWGAN[23] DCGAN[21] IWGAN[23]

One-hot Distributed One-hot Distributed One-hot Distributed One-hot Distributed
rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP

12000 81.38 60.31 83.28 61.68 82.84 62.87 83.05 62.60 71.57 52.68 71.68 52.83 72.21 53.23 73.16 54.96
18000 82.10 62.31 82.16 61.18 82.17 62.50 82.89 62.26 70.38 51.87 71.32 52.88 71.98 53.34 72.60 53.97
24000 82.04 61.26 83.43 63.23 82.42 61.58 83.84 63.41 70.92 51.99 71.90 52.25 71.72 53.01 72.35 54.00
30000 82.10 61.42 83.02 62.41 82.66 61.62 83.58 63.78 70.47 52.54 72.38 53.71 72.48 53.35 73.44 54.71
36000 82.12 60.70 82.30 61.92 82.51 61.29 82.78 63.43 71.23 52.18 72.40 53.73 72.40 52.76 72.85 53.85

TABLE VII: Comparison with state-of-art methods on market-
1501 dataset. Best and second best results are denoted as bold
and underlined text, respectively.

Method Market-1501
rank-1 mAP

Gate-reID (ECCV’16) [41] 65.88 39.55
SCSP (CVPR’16) [42] 51.90 26.35
DNS (CVPR’16) [43] 61.02 35.68
ResNet+OIM (CVPR’17) [44] 82.10 -
Latent Parts (CVPR’17) [45] 80.31 57.53
P2S (CVPR’17) [46] 70.72 44.27
Consistent-Aware (CVPR’17) [11] 80.90 55.60
Spindle (CVPR’17) [47] 76.90 -
SSM (CVPR’17) [48] 82.21 68.80
JLML (IJCAI’17) [49] 85.10 65.50
SVDNet (ICCV’17) [50] 82.30 62.10
Part Aligned (ICCV’17) [51] 81.00 63.40
PDC (ICCV’17) [52] 84.14 63.41
LSRO (ICCV’17) [16] 78.06 56.23
dMpRL-II (Arxiv’18) [15] 80.37 58.59
Baseline 72.74 50.99
Ours-o+DCGAN 82.10 62.31
Ours-d+DCGAN 83.43 63.23
Ours-o+IWGAN 82.66 61.62
Ours-d+IWGAN 83.58 63.78
Ours-d+IWGAN+re-rank 86.07 77.64

II when the CNN network is relatively stable.

Table III also summarizes the results of the state-of-the-art
pseudo-labeling on person re-identification. It is shown that
LSRO[16] achieved best performance with rank-1=78.21%
and mAP=56.33% on Market-1501 dataset with 24,000 gen-
erated data. An overall performance increase amongst three
MpRL[15] implementations can be observed, with dMpRL-II
achieving the best results rank-1=80.37% and mAP=58.59%.
Our proposed one-hot labeling scheme outperforms best com-
petitor dMpRL-II by a margin of 1.75% and 3.72% in rank-
1 accuracy and mAP, respectively, and distributed scheme
further improves the performance to 3.06% and 4.64%. This
is reasonable since distributed labels consider similarity con-
tributions from each class and are more suitable for GAN
generated data. Another remarkable fact is that despite our
proposed labeling strategies assign pseudo-labels to unlabeled
data immediately as training starts, they both outperforms the
dMpRL-II which only starts to produce labels with relative
stable CNN network after several epochs. This comparison
proves that our proposed methods is superior to all state-of-
the-art pseudo-labeling methods.

TABLE VIII: Comparison of state-of-art approaches on the
DukeMTMC-reID dataset. Rank-1 accuracy (%) and mAP (%)
are reported.

Method DukeMTMC-reID
rank-1 mAP

BOW+kissme (ICCV’15)[53] 25.13 12.17
LOMO+XQDA (CVPR’15)[54] 30.75 17.04
LSRO (ICCV’17)[16] 67.68 47.13
dMpRL (Arxiv’18)[15] 68.24 48.58
Verif + Identif (TOMM’17)[34] 68.90 49.30
APR (Arxiv’17)[55] 70.69 51.88
ACRN (CVPRW’17)[56] 72.58 51.96
PAN (Arxiv’17)[57] 71.59 51.51
FMN (Arxiv’17)[33] 74.51 56.88
Bilinear Coding (Arxiv’18) [58] 76.20 56.90
SVDNet (ICCV’17)[50] 76.70 56.80
DPFL (ICCVW’17)[32] 79.20 60.60
Baseline 65.22 44.99
Ours-o+DCGAN 71.57 52.68
Ours-d+DCGAN 72.38 53.71
Ours-o+IWGAN 72.40 52.76
Ours-d+IWGAN 72.85 53.85
Ours-d+IWGAN+re-rank 79.04 70.74

TABLE IX: Comparison with state-of-art methods on
CUHK03(detected) dataset. Rank-1 accuracy (%) and mAP
(%) are reported.

Method CUHK03
rank-1 mAP

Gate-reID (ECCV’16) [41] 68.10 58.84
LOMO+XQDA (CVPR’15) [54] 46.30 -
dMpRL-II (Arxiv’18) [15] 68.68 73.48
LSRO (ICCV’17) [16] 73.10 77.40
SVDNet (ICCV’17) [50] 81.80 84.80
Baseline 70.68 74.25
Ours-o+DCGAN 73.28 78.92
Ours-d+DCGAN 74.17 79.62
Ours-o+IWGAN 73.99 78.64
Ours-d+IWGAN 74.58 79.89
Ours-d+IWGAN+re-rank 80.73 86.38

7) Comparison with state-of-the-art methods: Our work
is dedicated to better exploiting synthetic images to boost
re-id performance rather than beating the state-of-the-art re-
sults, however, we still compare our proposed approach with
state-of-the-art works on Market-1501, DukeMTMC-reID and
CUHK03 datasets to show its competence. As shown in Table
VII, our distributed labels with IWGAN images achieved rank-
1=83.58%, mAP=63.78% on Market-1501 dataset, which is
very competitive with many state-of-the-art methods except
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for JLML (rank1=85.1%, mAP=65.50%) and PDC. The main
reason why JLML outperforms by a margin of 2% is because
JLML incorporates three extra networks focusing on different
local areas compared to our single branch architecture. With
a state-of-art re-ranking technique from [59], we observed a
further boost of 2.5% in rank-1 and 13.86% mAP demonstrat-
ing that reciprocal relationships are encoded in our learned
identity representations. On DukeMTMC-reID dataset (Table
VIII), we achieved 79.04% rank-1 accuracy and 70.74% with
re-ranking. DFPL slightly outperforms ours in rank-1 (around
0.2%) because it takes advantage of multiple networks with
different input scales and imposes consensus learning to force
representations from different scales to be close if they belong
to the same identity, while ours only adopts a single network.
However, our mAP achieved 70.74% which is 10% higher
than DFPL (60.60%). On the CUHK03 dataset (Table IX),
it is clearly seen that our proposed model outperforms two
competitive data augmentation methods LSRO and dMpRL
by a margin of 1.48% and 5.9% in rank-1, respectively. With
a re-ranking technique added, our model achieves 80.37%
in rank-1 and 86.38% in mAP, which is competitive com-
pared to SVDNet (81.80% and 84.80%). Without re-ranking,
performances amongst all three datasets are inferior to other
state-of-the-art approaches, this is partly due to our choice of
a simple backbone network and partly because our work is
focused on addressing pseudo-labeling problem for training
data augmentation rather than explicitly dealing with hard
failure cases, such as occlusion, scales and misalignment.

D. Ablation Study

We provide ablative experimental results on Market-1501
to evaluate each component of our proposed approach. The
network is under full supervision of labeled data for baseline
and center-loss and turns into a semi-supervised case when
unlabeled data is introduced.

TABLE X: Ablative experiments in terms of each component
of our proposed approach on Market-1501. 24,000 unlabeled
data are incorporated for semi-supervised learning.

Methods rank-1 mAP supervision
Baseline 72.74 50.99 full
Center 79.45 57.25 full

FAPL-o 82.04 61.26 semi
FAPL-d 83.43 63.23 semi

1) Center loss: Center loss plays a crucial role in our
proposed pseudo-labeling approach by reducing intra-class
variations between data points, thus leading to more discrim-
inative feature representations [36]. In this experiment, only
labeled data is used for training to show the effectiveness
of center regularization. When the center loss was applied
(second row in Table. X), the baseline experienced a 6.71%
rank-1 increase from 72.74% to 79.45% and 6.26% gain in
mAP from 50.99% to achieve 57.25%. This confirms the
positive effect center loss has on learning more discriminative
representations.

2) Pseudo-labeling: On top of center loss, we add in
our pseudo-labeling with both proposed schemes, denoted

as FAPL-o and FAPL-d, respectively, in Table X. It can be
observed that when synthetic data is incorporated for training
with pseudo-labels, the network gains a further performance
boost on both metrics to achieve 82.04% rank-1 accuracy for
one-hot and 83.43% for distributed, 61.26% in mAP for one-
hot and 63.23% for distributed, respectively.

VI. CONCLUSION

In this paper, we emphasize on the fact that a reasonable
labeling approach for GAN generated images should consider
representation similarity and encode their relationships with
real data samples. To this end, we proposed a Feature Affinity
based Pseudo Labeling (FAPL) approach with one-hot and
distributed label encodings for the person re-identification task.
Unlabeled images are assigned label encodings according to
their distance to identity centers in feature space and help ad-
dress re-id problem in a semi-supervised manner. Experiment
results show that our proposed approach outperforms other
pseudo-labeling methods on person re-identification task by a
large margin and achieves competitive accuracy compared to
state-of-the-art solutions.
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