

Task & Challenges

Temporal Action Segmentation

Temporally segment untrimmed procedural videos and assign framewise semantic labels

Dataset Condensation

• Synthesizes a **small set** that trains models as effectively as the full dataset

Challenges

- Hierarchical redundancy exists in TAS data, e.g., feature, temporal, and action ordering in the sequence
- How to **restore the actual temporal resolution** if condensed for TAS learning?
- How to ensure **condensed data match the quality of the original**?

Results Effectiveness

	50Salads [33]					Breakfast [16]					
	Acc	Edit	F1@{10, 25, 50}	Storage	Acc	Edit	F1@{10, 25, 50}	Storage			
	MS-TCN [12]										
Original	80.6	63.1	69.9 / 67.4 / 59.0	4.5 GB	67.2	60.6	50.5 / 46.3 / 36.8	28 GB			
Mean	69.0	42.7	50.0 / 46.1 / 37.4	7.8 MB	47.6	31.8	27.8 / 23.3 / 15.6	96 MB			
Coreset [38]	61.7	43.3	49.9 / 46.3 / 35.4	7.8 MB	49.7	36.8	32.3 / 27.5 / 19.3	96 MB			
TCA [11]	56.4	33.6	39.8 / 35.8 / 25.9	-	34.2	20.7	17.9 / 13.8 / 8.4	-			
Encoded	69.0	43.6	50.6 / 46.0 / 37.4	3.9 MB	37.9	49.8	40.0 / 32.8 / 19.4	44 MB			
Ours	74.4	59.5	65.1 / 61.0 / 50.2	3.9 MB	55.5	45.6	46.7 / 41.1 / 28.7	44 MB			
Encoded [†]	72.1	58.2	63.2 / 60.0 / 49.3	564 MB	43.4	53.2	45.8 / 37.4 / 22.8	3.4 GB			
Ours [†]	72.8	59.8	65.2 / 61.3 / 51.3	564 MB	54.1	53.3	49.8 / 44.3 / 33.1	3.4 GB			

† indicates compression along feature channels only, preserving the temporal dimension

- Boring baselines (Mean, Coreset) retain ~70% performances on Breakfast, showing significant temporal redundancy
- Ours reduces storage by 500×, yet yielding 83% performance on **Breakfast**

random sampling

Instances Per Segment

IPS (K)	Acc	Edit	F1@{10, 25, 50}	Storage	Ratio(%)
Mean	47.6	31.8	27.8 / 23.3 / 15.6	96 MB	0.34
1	52.1	32.2	28.1 / 23.7 / 16.0	11 MB	0.04
2	52.7	38.4	34.9 / 30.1 / 21.1	22 MB	0.08
4	52.4	45.9	40.7 / 35.8 / 26.0	45 MB	0.15
8	55.6	52.3	47.3 / 42.1 / 31.4	91 MB	0.31
16	54.2	51.2	47.4 / 41.8 / 31.0	182 MB	0.62
†	54.1	53.3	49.8 / 44.3 / 33.1	3.4 GB	12.0

sequence structure is important • Comparable performance with 50%

Low score with 10% shows that

• Performance plateaus after K=8, likely limited by cVAE's expressiveness

- learn action prior
- Network inversion retrieves latent data

Sequence Structure

Informative sequence structure is

codes that represent the original

important for good TAS performance