
Condensing Action Segmentation Datasets via Generative Network Inversion
Guodong Ding, Rongyu Chen and Angela Yao

National University of Singapore

Task & Challenges

Dataset Condensation
• Synthesizes a small set that

trains models as effectively as
the full dataset

Temporal Action Segmentation
• Temporally segment untrimmed

procedural videos and assign frame-
wise semantic labels

Approach

Generative Network Inversion
• Generative models can effectively

learn action prior
• Network inversion retrieves latent

codes that represent the original
data

Challenges
• Hierarchical redundancy exists in TAS data, e.g., feature, temporal,

and action ordering in the sequence
• How to restore the actual temporal resolution if condensed for

TAS learning?
• How to ensure condensed data match the quality of the original?

Takeaways
Hierarchical Redundancy in TAS
• Feature, temporal and sequence

redundancy. TAS DC is promising
but underexplored

take
cup

pour
coffee

add
milk

add
sugar

stir
coffee SIL

make coffee

Untrimmed Procedural Video
1. Generative Feature & Temporal Condensation 2. Diverse Sequence Sampling

• Decode full-resolution input for TAS learning using:

3. Decoding and Training

Sequence Structure
• Informative sequence structure is

important for good TAS performance

Data
Condensation

Similar
Performance

Train

Train

Learning Algorithm

<< 50K distilled images

50K images

Results

• Select sequences that maximize diversity in action orderings
until the target count is reached:

• Boring baselines (Mean, Coreset) retain ~70% performances on
Breakfast, showing significant temporal redundancy

• Ours reduces storage by 500×, yet yielding 83% performance on
Breakfast

Effectiveness
GTEA [13] 50Salads [33] Breakfast [16]

Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage

MS-TCN [12]

Original 79.0 76.3 85.8 / 83.4 / 69.8 245 MB 80.6 63.1 69.9 / 67.4 / 59.0 4.5 GB 67.2 60.6 50.5 / 46.3 / 36.8 28 GB

Mean 71.2 73.3 77.1 / 73.7 / 59.4 7.2 MB 69.0 42.7 50.0 / 46.1 / 37.4 7.8 MB 47.6 31.8 27.8 / 23.3 / 15.6 96 MB
Coreset [38] 66.7 66.1 72.4 / 68.9 / 53.2 7.2 MB 61.7 43.3 49.9 / 46.3 / 35.4 7.8 MB 49.7 36.8 32.3 / 27.5 / 19.3 96 MB
TCA [11] 60.9 54.1 59.2 / 55.3 / 39.3 - 56.4 33.6 39.8 / 35.8 / 25.9 - 34.2 20.7 17.9 / 13.8 / 8.4 -
Encoded 70.4 65.5 72.2 / 68.8 / 52.1 3.6 MB 69.0 43.6 50.6 / 46.0 / 37.4 3.9 MB 37.9 49.8 40.0 / 32.8 / 19.4 44 MB
Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Encoded† 70.5 72.7 77.1 / 73.7 / 59.8 30.5 MB 72.1 58.2 63.2 / 60.0 / 49.3 564 MB 43.4 53.2 45.8 / 37.4 / 22.8 3.4 GB
Ours† 73.3 73.8 79.2 / 75.4 / 65.5 30.5 MB 72.8 59.8 65.2 / 61.3 / 51.3 564 MB 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB

ASFormer [39]

Original 79.7 84.6 90.1 / 88.8 / 79.2 245 MB 85.6 79.6 85.1 / 83.4 / 76.0 4.5 GB 73.5 75.0 76.0 / 70.6 / 57.4 28 GB

Mean 72.2 76.9 82.1 / 79.7 / 65.1 7.2 MB 71.6 49.8 56.6 / 52.5 / 43.4 7.8 MB 52.2 43.2 43.5 / 38.3 / 26.7 96 MB
Coreset [38] 71.0 75.4 81.0 / 78.1 / 62.9 7.2 MB 69.4 46.8 56.6 / 52.9 / 39.6 7.8 MB 52.0 48.1 48.3 / 42.4 / 29.7 96 MB
TCA [11] 62.2 57.8 63.0 / 57.4 / 39.9 - 66.8 44.0 52.2 / 47.3 / 36.6 - 36.6 28.2 26.3 / 22.1 / 14.3 -
Encoded 69.2 70.2 73.3 / 67.3 / 49.8 3.6 MB 71.2 45.4 55.0 / 50.4 / 40.2 3.9 MB 37.6 53.6 50.7 / 41.3 / 24.0 44 MB
Ours 77.9 82.7 86.4 / 84.5 / 70.4 3.6 MB 81.2 68.9 77.0 / 73.8 / 64.7 3.9 MB 59.8 48.8 54.1 / 47.7 / 34.1 44 MB

Encoded† 74.0 78.1 83.1 / 79.6 / 67.3 30.5 MB 75.6 60.1 67.7 / 64.2 / 53.5 564 MB 45.7 54.8 52.6 / 43.3 / 25.2 3.4 GB
Our’s† 75.0 79.0 83.6 / 79.5 / 67.7 30.5 MB 76.2 65.0 73.1 / 68.8 / 58.5 564 MB 61.1 61.4 62.4 / 56.0 / 42.1 3.4 GB

Table 1. Performance comparison on dataset condensation for TAS on three common benchmarks with different backbones. Storage sizes
are highlighted in colors (high, medium, low). Our method remarkably reduces storage while retaining competitive performances across
different datasets and model architectures. More details of the settings (d, K, and ω) for each method are provided in the Supplementary.

– “TCA” [11] is a baseline that follows its original imple-
mentation in which action segments are generated directly
from random latent codes. This method does not require
storage for latent codes, as they can be sampled on the fly
during decoding.
– “Encoded” is the closest to our setup, with the key differ-
ence being that, instead of using network inversion to obtain
latent codes, it stores the mean of encoded segment frames.
Specifically, zk = mean(µ1, ..., µωk). This approach results
in the same storage requirement as ours.
– “Encoded†” refers to a setup similar to “Encoded” except
for removing the sequence sampling and setting the num-
ber of instances per segment to the actual segment length,
i.e., K = ω, which creates a latent code for each individual
frame. The approach condenses along the feature dimen-
sion rather than the temporal dimension.

4.3. Effectiveness
Table 1 compares our approach (GNI) to the baselines on
three widely adopted TAS benchmarks. As observed, ap-
proaches like “Mean” and “Coreset”, which primarily con-
dense from the temporal aspect, achieve similar perfor-
mance across all datasets while maintaining an identical
storage size. Note that in the best scenario, boring videos
generated by these approaches can account for up to 80%
performance of training with the “Original”. This high-

lights the temporal redundancy present in videos. TCA [11]
does not incur additional storage requirements for the latent
code, yet it produces the lowest overall performance across
all evaluation metrics on three datasets. Although the gen-
erated segments inherit the action priors learned from the
dataset, it is still likely the decoded segments from ran-
domly sampled latent codes may not align well with the
original data. A segmentation model trained on these mis-
aligned features may not generalize well to the real testing
data.

By storing encoded mean features of segments from the
encoder as latent codes and diverse sequence sampling,
“Encoded” can manage to achieve segmentation perfor-
mance comparable to the “Mean” baseline, while requiring
only half the storage cost. The best performance is achieved
by our approach, which adds a network inversion process on
top of “Encoded”. By imposing network inversion, a sig-
nificant performance gain in segmental metrics is observed.
For instance, on the 50Salads dataset, the average F1 score
is boosted by a substantial 14.1% (from 44.7% to 58.8%).
This underscores the effectiveness of network inversion, as
it adapts the latent codes to better reflect the actual data.

Comparing across storage sizes, our approach also sig-
nificantly outperforms its counterparts, “Mean” and “Core-
set”, while only requiring roughly half the storage burden –
44 MB compared to 96 MB on the Breakfast dataset.

GTEA [13] 50Salads [33] Breakfast [16]

Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage

MS-TCN [12]

Original 79.0 76.3 85.8 / 83.4 / 69.8 245 MB 80.6 63.1 69.9 / 67.4 / 59.0 4.5 GB 67.2 60.6 50.5 / 46.3 / 36.8 28 GB

Mean 71.2 73.3 77.1 / 73.7 / 59.4 7.2 MB 69.0 42.7 50.0 / 46.1 / 37.4 7.8 MB 47.6 31.8 27.8 / 23.3 / 15.6 96 MB
Coreset [38] 66.7 66.1 72.4 / 68.9 / 53.2 7.2 MB 61.7 43.3 49.9 / 46.3 / 35.4 7.8 MB 49.7 36.8 32.3 / 27.5 / 19.3 96 MB
TCA [11] 60.9 54.1 59.2 / 55.3 / 39.3 - 56.4 33.6 39.8 / 35.8 / 25.9 - 34.2 20.7 17.9 / 13.8 / 8.4 -
Encoded 70.4 65.5 72.2 / 68.8 / 52.1 3.6 MB 69.0 43.6 50.6 / 46.0 / 37.4 3.9 MB 37.9 49.8 40.0 / 32.8 / 19.4 44 MB
Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Encoded† 70.5 72.7 77.1 / 73.7 / 59.8 30.5 MB 72.1 58.2 63.2 / 60.0 / 49.3 564 MB 43.4 53.2 45.8 / 37.4 / 22.8 3.4 GB
Ours† 73.3 73.8 79.2 / 75.4 / 65.5 30.5 MB 72.8 59.8 65.2 / 61.3 / 51.3 564 MB 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB

ASFormer [39]

Original 79.7 84.6 90.1 / 88.8 / 79.2 245 MB 85.6 79.6 85.1 / 83.4 / 76.0 4.5 GB 73.5 75.0 76.0 / 70.6 / 57.4 28 GB

Mean 72.2 76.9 82.1 / 79.7 / 65.1 7.2 MB 71.6 49.8 56.6 / 52.5 / 43.4 7.8 MB 52.2 43.2 43.5 / 38.3 / 26.7 96 MB
Coreset [38] 71.0 75.4 81.0 / 78.1 / 62.9 7.2 MB 69.4 46.8 56.6 / 52.9 / 39.6 7.8 MB 52.0 48.1 48.3 / 42.4 / 29.7 96 MB
TCA [11] 62.2 57.8 63.0 / 57.4 / 39.9 - 66.8 44.0 52.2 / 47.3 / 36.6 - 36.6 28.2 26.3 / 22.1 / 14.3 -
Encoded 69.2 70.2 73.3 / 67.3 / 49.8 3.6 MB 71.2 45.4 55.0 / 50.4 / 40.2 3.9 MB 37.6 53.6 50.7 / 41.3 / 24.0 44 MB
Ours 77.9 82.7 86.4 / 84.5 / 70.4 3.6 MB 81.2 68.9 77.0 / 73.8 / 64.7 3.9 MB 59.8 48.8 54.1 / 47.7 / 34.1 44 MB

Encoded† 74.0 78.1 83.1 / 79.6 / 67.3 30.5 MB 75.6 60.1 67.7 / 64.2 / 53.5 564 MB 45.7 54.8 52.6 / 43.3 / 25.2 3.4 GB
Our’s† 75.0 79.0 83.6 / 79.5 / 67.7 30.5 MB 76.2 65.0 73.1 / 68.8 / 58.5 564 MB 61.1 61.4 62.4 / 56.0 / 42.1 3.4 GB

Table 1. Performance comparison on dataset condensation for TAS on three common benchmarks with different backbones. Storage sizes
are highlighted in colors (high, medium, low). Our method remarkably reduces storage while retaining competitive performances across
different datasets and model architectures. More details of the settings (d, K, and ω) for each method are provided in the Supplementary.

– “TCA” [11] is a baseline that follows its original imple-
mentation in which action segments are generated directly
from random latent codes. This method does not require
storage for latent codes, as they can be sampled on the fly
during decoding.
– “Encoded” is the closest to our setup, with the key differ-
ence being that, instead of using network inversion to obtain
latent codes, it stores the mean of encoded segment frames.
Specifically, zk = mean(µ1, ..., µωk). This approach results
in the same storage requirement as ours.
– “Encoded†” refers to a setup similar to “Encoded” except
for removing the sequence sampling and setting the num-
ber of instances per segment to the actual segment length,
i.e., K = ω, which creates a latent code for each individual
frame. The approach condenses along the feature dimen-
sion rather than the temporal dimension.

4.3. Effectiveness
Table 1 compares our approach (GNI) to the baselines on
three widely adopted TAS benchmarks. As observed, ap-
proaches like “Mean” and “Coreset”, which primarily con-
dense from the temporal aspect, achieve similar perfor-
mance across all datasets while maintaining an identical
storage size. Note that in the best scenario, boring videos
generated by these approaches can account for up to 80%
performance of training with the “Original”. This high-

lights the temporal redundancy present in videos. TCA [11]
does not incur additional storage requirements for the latent
code, yet it produces the lowest overall performance across
all evaluation metrics on three datasets. Although the gen-
erated segments inherit the action priors learned from the
dataset, it is still likely the decoded segments from ran-
domly sampled latent codes may not align well with the
original data. A segmentation model trained on these mis-
aligned features may not generalize well to the real testing
data.

By storing encoded mean features of segments from the
encoder as latent codes and diverse sequence sampling,
“Encoded” can manage to achieve segmentation perfor-
mance comparable to the “Mean” baseline, while requiring
only half the storage cost. The best performance is achieved
by our approach, which adds a network inversion process on
top of “Encoded”. By imposing network inversion, a sig-
nificant performance gain in segmental metrics is observed.
For instance, on the 50Salads dataset, the average F1 score
is boosted by a substantial 14.1% (from 44.7% to 58.8%).
This underscores the effectiveness of network inversion, as
it adapts the latent codes to better reflect the actual data.

Comparing across storage sizes, our approach also sig-
nificantly outperforms its counterparts, “Mean” and “Core-
set”, while only requiring roughly half the storage burden –
44 MB compared to 96 MB on the Breakfast dataset.

indicates compression along feature channels only, preserving the temporal dimension

Instances Per Segment

• Larger K improves performance by
enabling finer-grained segmentation for
more precise inversion

• Performance plateaus after K=8, likely
limited by cVAE's expressiveness

Sampling Acc Edit F1@{10, 25, 50} Storage

G
TE

A ✁ 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB
Random 74.0 69.3 76.2 / 72.8 / 60.4 3.6 MB

Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB

50
Sa

la
ds ✁ 75.3 60.0 66.2 / 62.6 / 49.9 7.8 MB

Random 71.9 58.9 62.3 / 58.4 / 49.5 3.9 MB
Ours 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB

B
re

ak
fa

st ✁ 55.6 52.3 47.3 / 42.1 / 31.4 91 MB
Random 52.3 39.9 41.2 / 36.5 / 24.1 44 MB

Ours 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Table 2. Effectiveness of the sequence sampling strategies on three
TAS benchmarks. Our proposed sampling outperforms random
while retaining comparable performances to the case where no se-
quence sub-sampling is performed.

ω Acc Edit F1@{10, 25, 50} Storage Ratio(%)

0.1 45.0 44.9 40.5 / 35.6 / 23.2 1.3 MB 0.53
0.2 53.1 49.1 50.4 / 44.6 / 30.6 1.9 MB 0.78
0.3 56.9 52.3 56.8 / 52.6 / 36.7 2.4 MB 0.98
0.4 73.6 72.9 77.1 / 74.2 / 63.1 2.9 MB 1.18
0.5 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 1.47

1 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB 2.94

Table 3. Sequence sampling ratio (ω) effects on GTEA. With only
0.5, we can achieve comparable performances to the full ω = 1.

Our proposed condensation framework is independent of
the segmentation model, making it compatible with differ-
ent backbones. TAS performances in Tab. 1 with two seg-
mentation backbones [12, 39] demonstrates consistent per-
formance improvements over the baselines.

4.4. Ablation and Hyper-parameter Study

Sequence Sampling Strategy. To evaluate the effective-
ness of our proposed diversity-based sequence sampling
technique, we compare it against random sampling and re-
port the results in Tab. 2. For all datasets, the default sam-
pling ratio ω is set to 0.5. We first observe that, with a
sampling ratio of 0.5, effectively reducing the number of
samples by half, the segmentation performance is not sig-
nificantly affected, highlighting sample redundancy in the
video datasets. On the other hand, our strategy consis-
tently outperforms the random sampling across all metrics.
Specifically, on the 50Salads dataset, there is a 2.5% gap
in the frame-wise accuracy (74.4% vs. 71.9%). The con-
sistent performance gain over the counterpart underscores
that, when constrained by a sequence budget, prioritizing
the incorporation of diverse action sequences enhances the
model’s generalization capability more effectively.

Original
Ours

Figure 3. T-SNE visualization of original and decoded video fea-
tures. Different colors indicate different action classes. The visu-
alization shows that our generated features are well-aligned with
original features. Best viewed when zoomed in.

IPS (K) Acc Edit F1@{10, 25, 50} Storage Ratio(%)

Mean 47.6 31.8 27.8 / 23.3 / 15.6 96 MB 0.34

1 52.1 32.2 28.1 / 23.7 / 16.0 11 MB 0.04
2 52.7 38.4 34.9 / 30.1 / 21.1 22 MB 0.08
4 52.4 45.9 40.7 / 35.8 / 26.0 45 MB 0.15
8 55.6 52.3 47.3 / 42.1 / 31.4 91 MB 0.31

16 54.2 51.2 47.4 / 41.8 / 31.0 182 MB 0.62

† 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB 12.0

Table 4. Effect of the number of instance per segment (K) on
Breakfast dataset without sequence sampling imposed. The ratio
denotes the relative storage size of each setup compared to the
original full dataset size. † indicates the setup in which latent codes
are optimized on a per-frame basis.

Sequence Sampling Ratio ω. We further evaluate segmen-
tation performances on the GTEA dataset using various se-
quence sampling ratios ω, as shown in Tab. 3. As ω in-
creases, a greater number of sequences are used to train the
segmentation model, leading to a clear trend of improve-
ment on all segmentation metrics. Notably, there is a sub-
stantial performance boost when ω increases from 0.3 to 0.4,
with a 16.7% improvement in Acc and 20.6% in the Edit
score. Given the small scale of the GTEA dataset, a sam-
pling ratio of 0.5 provides sufficient diversity in sampled
sequences to effectively represent the dataset.
Instances per Segment (K). We next examine how the
number of instances per segment (K) impacts the seg-
mentation performance and storage. Table 4 presents the
segmentation performance without imposing the sequence
sampling. Across various K values, our approach consis-

Visualization
• Original features can be effectively restored

Original

Ours

Sequence Sampling

• Diversity-based sampling outperforms
random sampling

Sampling Acc Edit F1@{10, 25, 50} Storage

G
TE

A ✁ 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB
Random 74.0 69.3 76.2 / 72.8 / 60.4 3.6 MB

Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB

50
Sa

la
ds ✁ 75.3 60.0 66.2 / 62.6 / 49.9 7.8 MB

Random 71.9 58.9 62.3 / 58.4 / 49.5 3.9 MB
Ours 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB

B
re

ak
fa

st ✁ 55.6 52.3 47.3 / 42.1 / 31.4 91 MB
Random 52.3 39.9 41.2 / 36.5 / 24.1 44 MB

Ours 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Table 2. Effectiveness of the sequence sampling strategies on three
TAS benchmarks. Our proposed sampling outperforms random
while retaining comparable performances to the case where no se-
quence sub-sampling is performed.

ω Acc Edit F1@{10, 25, 50} Storage Ratio(%)

0.1 45.0 44.9 40.5 / 35.6 / 23.2 1.3 MB 0.53
0.2 53.1 49.1 50.4 / 44.6 / 30.6 1.9 MB 0.78
0.3 56.9 52.3 56.8 / 52.6 / 36.7 2.4 MB 0.98
0.4 73.6 72.9 77.1 / 74.2 / 63.1 2.9 MB 1.18
0.5 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 1.47

1 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB 2.94

Table 3. Sequence sampling ratio (ω) effects on GTEA. With only
0.5, we can achieve comparable performances to the full ω = 1.

Our proposed condensation framework is independent of
the segmentation model, making it compatible with differ-
ent backbones. TAS performances in Tab. 1 with two seg-
mentation backbones [12, 39] demonstrates consistent per-
formance improvements over the baselines.

4.4. Ablation and Hyper-parameter Study

Sequence Sampling Strategy. To evaluate the effective-
ness of our proposed diversity-based sequence sampling
technique, we compare it against random sampling and re-
port the results in Tab. 2. For all datasets, the default sam-
pling ratio ω is set to 0.5. We first observe that, with a
sampling ratio of 0.5, effectively reducing the number of
samples by half, the segmentation performance is not sig-
nificantly affected, highlighting sample redundancy in the
video datasets. On the other hand, our strategy consis-
tently outperforms the random sampling across all metrics.
Specifically, on the 50Salads dataset, there is a 2.5% gap
in the frame-wise accuracy (74.4% vs. 71.9%). The con-
sistent performance gain over the counterpart underscores
that, when constrained by a sequence budget, prioritizing
the incorporation of diverse action sequences enhances the
model’s generalization capability more effectively.

Original
Ours

Figure 3. T-SNE visualization of original and decoded video fea-
tures. Different colors indicate different action classes. The visu-
alization shows that our generated features are well-aligned with
original features. Best viewed when zoomed in.

IPS (K) Acc Edit F1@{10, 25, 50} Storage Ratio(%)

Mean 47.6 31.8 27.8 / 23.3 / 15.6 96 MB 0.34

1 52.1 32.2 28.1 / 23.7 / 16.0 11 MB 0.04
2 52.7 38.4 34.9 / 30.1 / 21.1 22 MB 0.08
4 52.4 45.9 40.7 / 35.8 / 26.0 45 MB 0.15
8 55.6 52.3 47.3 / 42.1 / 31.4 91 MB 0.31

16 54.2 51.2 47.4 / 41.8 / 31.0 182 MB 0.62

† 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB 12.0

Table 4. Effect of the number of instance per segment (K) on
Breakfast dataset without sequence sampling imposed. The ratio
denotes the relative storage size of each setup compared to the
original full dataset size. † indicates the setup in which latent codes
are optimized on a per-frame basis.

Sequence Sampling Ratio ω. We further evaluate segmen-
tation performances on the GTEA dataset using various se-
quence sampling ratios ω, as shown in Tab. 3. As ω in-
creases, a greater number of sequences are used to train the
segmentation model, leading to a clear trend of improve-
ment on all segmentation metrics. Notably, there is a sub-
stantial performance boost when ω increases from 0.3 to 0.4,
with a 16.7% improvement in Acc and 20.6% in the Edit
score. Given the small scale of the GTEA dataset, a sam-
pling ratio of 0.5 provides sufficient diversity in sampled
sequences to effectively represent the dataset.
Instances per Segment (K). We next examine how the
number of instances per segment (K) impacts the seg-
mentation performance and storage. Table 4 presents the
segmentation performance without imposing the sequence
sampling. Across various K values, our approach consis-

• Sampling strategy

• Low score with 10% shows that
sequence structure is important

• Comparable performance with 50%
sequences highlights redundancy

Sampling Acc Edit F1@{10, 25, 50} Storage

G
TE

A ✁ 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB
Random 74.0 69.3 76.2 / 72.8 / 60.4 3.6 MB

Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB

50
Sa

la
ds ✁ 75.3 60.0 66.2 / 62.6 / 49.9 7.8 MB

Random 71.9 58.9 62.3 / 58.4 / 49.5 3.9 MB
Ours 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB

B
re

ak
fa

st ✁ 55.6 52.3 47.3 / 42.1 / 31.4 91 MB
Random 52.3 39.9 41.2 / 36.5 / 24.1 44 MB

Ours 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Table 2. Effectiveness of the sequence sampling strategies on three
TAS benchmarks. Our proposed sampling outperforms random
while retaining comparable performances to the case where no se-
quence sub-sampling is performed.

ω Acc Edit F1@{10, 25, 50} Storage Ratio(%)

0.1 45.0 44.9 40.5 / 35.6 / 23.2 1.3 MB 0.53
0.2 53.1 49.1 50.4 / 44.6 / 30.6 1.9 MB 0.78
0.3 56.9 52.3 56.8 / 52.6 / 36.7 2.4 MB 0.98
0.4 73.6 72.9 77.1 / 74.2 / 63.1 2.9 MB 1.18
0.5 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 1.47

1 76.3 74.8 80.0 / 78.0 / 61.7 7.2 MB 2.94

Table 3. Sequence sampling ratio (ω) effects on GTEA. With only
0.5, we can achieve comparable performances to the full ω = 1.

Our proposed condensation framework is independent of
the segmentation model, making it compatible with differ-
ent backbones. TAS performances in Tab. 1 with two seg-
mentation backbones [12, 39] demonstrates consistent per-
formance improvements over the baselines.

4.4. Ablation and Hyper-parameter Study

Sequence Sampling Strategy. To evaluate the effective-
ness of our proposed diversity-based sequence sampling
technique, we compare it against random sampling and re-
port the results in Tab. 2. For all datasets, the default sam-
pling ratio ω is set to 0.5. We first observe that, with a
sampling ratio of 0.5, effectively reducing the number of
samples by half, the segmentation performance is not sig-
nificantly affected, highlighting sample redundancy in the
video datasets. On the other hand, our strategy consis-
tently outperforms the random sampling across all metrics.
Specifically, on the 50Salads dataset, there is a 2.5% gap
in the frame-wise accuracy (74.4% vs. 71.9%). The con-
sistent performance gain over the counterpart underscores
that, when constrained by a sequence budget, prioritizing
the incorporation of diverse action sequences enhances the
model’s generalization capability more effectively.

Original
Ours

Figure 3. T-SNE visualization of original and decoded video fea-
tures. Different colors indicate different action classes. The visu-
alization shows that our generated features are well-aligned with
original features. Best viewed when zoomed in.

IPS (K) Acc Edit F1@{10, 25, 50} Storage Ratio(%)

Mean 47.6 31.8 27.8 / 23.3 / 15.6 96 MB 0.34

1 52.1 32.2 28.1 / 23.7 / 16.0 11 MB 0.04
2 52.7 38.4 34.9 / 30.1 / 21.1 22 MB 0.08
4 52.4 45.9 40.7 / 35.8 / 26.0 45 MB 0.15
8 55.6 52.3 47.3 / 42.1 / 31.4 91 MB 0.31

16 54.2 51.2 47.4 / 41.8 / 31.0 182 MB 0.62

† 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB 12.0

Table 4. Effect of the number of instance per segment (K) on
Breakfast dataset without sequence sampling imposed. The ratio
denotes the relative storage size of each setup compared to the
original full dataset size. † indicates the setup in which latent codes
are optimized on a per-frame basis.

Sequence Sampling Ratio ω. We further evaluate segmen-
tation performances on the GTEA dataset using various se-
quence sampling ratios ω, as shown in Tab. 3. As ω in-
creases, a greater number of sequences are used to train the
segmentation model, leading to a clear trend of improve-
ment on all segmentation metrics. Notably, there is a sub-
stantial performance boost when ω increases from 0.3 to 0.4,
with a 16.7% improvement in Acc and 20.6% in the Edit
score. Given the small scale of the GTEA dataset, a sam-
pling ratio of 0.5 provides sufficient diversity in sampled
sequences to effectively represent the dataset.
Instances per Segment (K). We next examine how the
number of instances per segment (K) impacts the seg-
mentation performance and storage. Table 4 presents the
segmentation performance without imposing the sequence
sampling. Across various K values, our approach consis-

• Sampling capacity

• action progress
• action label

Lb
iltas = Lcls(x, y)

(x,y)→Tb↑T̂1:b

+ ω · Lsm(x, y)
(x,y)→Tb↑T̂1:b

x̂i = pω(x|zn, an, ci) and i → [1, ..., ε]

v̂ = concat(x̂1, ..., x̂N̂)

ŝb ↑ Uniform(Sb)

ci = (i↓ 1)/(ε↓ 1) and ci → [0, 1]

LTCA = Ez log pω(x|z, a, c)︸ ︷︷ ︸
Lrecon

↓DKL(qε(z|x, a, c)||p(z))︸ ︷︷ ︸
Lreg

• frame feature

Generative Action Model
Learn action prior

x

a

c

µ

ω

ε z

a

c

x̂

E
n
c
o
d

e
r

D
e
c
o
d
e
r

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)

z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
e
c
o
d
e
r

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

(MSE Loss)

(KL Divergence)

x

a

c

µ

ω

ε z

a

c

x̂

En
co

de
r

D
ec

od
er

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)
z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
ec

od
er

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

Figure 2. Generative Feature and Temporal Condensation Framework. (a) The generative action model is a conditional VAE that is trained
to reconstruct the input frames conditioned on the action class label and a coherence variable. (b) The network inversion aims to optimize
between decoded and original segments. Randomly sampled latent codes z1 and z2 are first inflated over time to the segment length, then
concatenated with the action label and coherence variable for decoding. During the optimization, only the latent codes get updated while
the decoder always stays fixed. These optimized latent codes z→1 and z→2 are stored as the condensed representation of the original segment.

indicates parameter updates during learning, while the indicates that the parameter is kept frozen.

long, a segmentation model outputs N continuous action
segments consecutive in time:

s1:N = (s1, s2, ..., sN), where sn = (an, tn, ϑn), (1)

s.t. tn+1 = tn + ϑn.

sn is a segment of length of ϑn, with action class label
an → A from A predefined categories. The tn denotes the
starting timestamp of segment sn. Alternatively, most ex-
isting works [12, 21, 39] formulate it as a frame-wise clas-
sification task (Lcls) and encourage the continuity of action
segments with a smoothing term (Lsm) with the learning ob-
jective written as:

Ltas = Lcls(x, y) + ϖ · Lsm(x, y), (2)

where y → A is the action label and ϖ a trade-off parameter.
Dataset Condensation (DC). Let R = {Xr,Yr} represent
a real image dataset, where Xr → Rnr↑d denotes the set
of training samples and Yr → Rnr↑c corresponds to their
associated labels. Here, nr denotes the number of original
samples while d and c represent the dimensionality of the
input features and output labels, respectively. The objective
of dataset condensation is to construct a synthetic dataset of
ns samples, i.e. S = {Xs,Ys}, where Xs → Rns↑d and
Ys → Rns↑c, with a considerably reduced size compared
to the real dataset, such that ns ↑ nr.

3.2. Task Formulation
Given an original TAS dataset with nr training videos, rep-
resented as R = {(Xi,Yi)}nr

i=1. Each video representation
X → RT↑D and its corresponding action label Y → RT↑A

have the same temporal length T . Here, D and A denote

the dimensions of frame feature space (x → RD) and the ac-
tion space (y → RA), respectively. The goal of dataset con-
densation is to create a compact subset S = {X̂i, Ŷi}ns

i=1,
where X̂ → RT →↑d represents a condensed version of orig-
inal video. The size of S is expected to be significantly
smaller than that of the original dataset R.

This objective can be achieved through two levels of
dataset condensation: (1) Sample compression: reducing
the dimensionality of each video such that T ↓↓d ↑ T ↓D
and (2) Sample Reduction: reducing the total number of
samples, i.e., ns ↑ nr. In light of this, our condensation
framework implements reductions at both levels: for sample
compression, we propose a generative feature and temporal
condensation technique using network inversion (Sec. 3.3).
For sample reduction, we use a diversity-based sampling
strategy (Sec. 3.4).

3.3. Generative Feature & Temporal Condensation
Generative models are compact yet flexible, able to produce
outputs of various lengths, making them ideal for condens-
ing TAS datasets. The condensation process involves two
main stages. In the first stage, a generative model is trained
to represent action segments. In the second stage, a network
inversion process is applied to optimize the latent codes, en-
suring the condensed dataset captures an optimal represen-
tation of the original action segments.
Generative Action Model. We choose the Temporally Co-
herent Action (TCA) model proposed in [11] as our genera-
tive action model. TCA is essentially a compact, two-layer
MLP VAE trained to reconstruct frame features. Specif-
ically, the encoder in the TCA model takes three inputs:
frame feature x, action label a, and a coherence variable
c. The variable c is mathematically defined as the relative

: Parameter trainable during learning

Network Inversion

• Optimize latent codes representing the action segment with:

• Multiple codes per segment enable finer-grained and more
precise inversion (Instances Per Segment)

x

a

c

µ

ω

ε z

a

c

x̂

E
n
c
o
d
e
r

D
e
c
o
d
e
r

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)

z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
e
c
o
d
e
r

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

x

a

c

µ

ω

ε z

a

c

x̂

E
n

c
o

d
e
r

D
e
c
o
d

e
r

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)

z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
e
c
o

d
e
r

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

x

a

c

µ

ω

ε z

a

c

x̂

E
n

c
o

d
e
r

D
e
c
o
d

e
r

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)

z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
e
c
o

d
e
r

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

(MSE Loss)

x

a

c

µ

ω

ε z

a

c

x̂

En
co

de
r

D
ec

od
er

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)
z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
ec

od
er

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

Figure 2. Generative Feature and Temporal Condensation Framework. (a) The generative action model is a conditional VAE that is trained
to reconstruct the input frames conditioned on the action class label and a coherence variable. (b) The network inversion aims to optimize
between decoded and original segments. Randomly sampled latent codes z1 and z2 are first inflated over time to the segment length, then
concatenated with the action label and coherence variable for decoding. During the optimization, only the latent codes get updated while
the decoder always stays fixed. These optimized latent codes z→1 and z→2 are stored as the condensed representation of the original segment.

indicates parameter updates during learning, while the indicates that the parameter is kept frozen.

long, a segmentation model outputs N continuous action
segments consecutive in time:

s1:N = (s1, s2, ..., sN), where sn = (an, tn, ϑn), (1)

s.t. tn+1 = tn + ϑn.

sn is a segment of length of ϑn, with action class label
an → A from A predefined categories. The tn denotes the
starting timestamp of segment sn. Alternatively, most ex-
isting works [12, 21, 39] formulate it as a frame-wise clas-
sification task (Lcls) and encourage the continuity of action
segments with a smoothing term (Lsm) with the learning ob-
jective written as:

Ltas = Lcls(x, y) + ϖ · Lsm(x, y), (2)

where y → A is the action label and ϖ a trade-off parameter.
Dataset Condensation (DC). Let R = {Xr,Yr} represent
a real image dataset, where Xr → Rnr↑d denotes the set
of training samples and Yr → Rnr↑c corresponds to their
associated labels. Here, nr denotes the number of original
samples while d and c represent the dimensionality of the
input features and output labels, respectively. The objective
of dataset condensation is to construct a synthetic dataset of
ns samples, i.e. S = {Xs,Ys}, where Xs → Rns↑d and
Ys → Rns↑c, with a considerably reduced size compared
to the real dataset, such that ns ↑ nr.

3.2. Task Formulation
Given an original TAS dataset with nr training videos, rep-
resented as R = {(Xi,Yi)}nr

i=1. Each video representation
X → RT↑D and its corresponding action label Y → RT↑A

have the same temporal length T . Here, D and A denote

the dimensions of frame feature space (x → RD) and the ac-
tion space (y → RA), respectively. The goal of dataset con-
densation is to create a compact subset S = {X̂i, Ŷi}ns

i=1,
where X̂ → RT →↑d represents a condensed version of orig-
inal video. The size of S is expected to be significantly
smaller than that of the original dataset R.

This objective can be achieved through two levels of
dataset condensation: (1) Sample compression: reducing
the dimensionality of each video such that T ↓↓d ↑ T ↓D
and (2) Sample Reduction: reducing the total number of
samples, i.e., ns ↑ nr. In light of this, our condensation
framework implements reductions at both levels: for sample
compression, we propose a generative feature and temporal
condensation technique using network inversion (Sec. 3.3).
For sample reduction, we use a diversity-based sampling
strategy (Sec. 3.4).

3.3. Generative Feature & Temporal Condensation
Generative models are compact yet flexible, able to produce
outputs of various lengths, making them ideal for condens-
ing TAS datasets. The condensation process involves two
main stages. In the first stage, a generative model is trained
to represent action segments. In the second stage, a network
inversion process is applied to optimize the latent codes, en-
suring the condensed dataset captures an optimal represen-
tation of the original action segments.
Generative Action Model. We choose the Temporally Co-
herent Action (TCA) model proposed in [11] as our genera-
tive action model. TCA is essentially a compact, two-layer
MLP VAE trained to reconstruct frame features. Specif-
ically, the encoder in the TCA model takes three inputs:
frame feature x, action label a, and a coherence variable
c. The variable c is mathematically defined as the relative

: Parameter frozen during learning

x

a

c

µ

ω

ε z

a

c

x̂

En
co

de
r

D
ec

od
er

Lrecon

Lreg

(a) Generative Action Model

(sample) (inflate)
z1

z2

z→1

z→2

z

z1

z1

z1

z2

z2

z2

a

a

a

a

a

a

a

c

0

·
·
·
·

1

D
ec

od
er

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Linv

x1

x2

x3

x4

x5

x6

(best)

(b) Network Inversion

Figure 2. Generative Feature and Temporal Condensation Framework. (a) The generative action model is a conditional VAE that is trained
to reconstruct the input frames conditioned on the action class label and a coherence variable. (b) The network inversion aims to optimize
between decoded and original segments. Randomly sampled latent codes z1 and z2 are first inflated over time to the segment length, then
concatenated with the action label and coherence variable for decoding. During the optimization, only the latent codes get updated while
the decoder always stays fixed. These optimized latent codes z→1 and z→2 are stored as the condensed representation of the original segment.

indicates parameter updates during learning, while the indicates that the parameter is kept frozen.

long, a segmentation model outputs N continuous action
segments consecutive in time:

s1:N = (s1, s2, ..., sN), where sn = (an, tn, ϑn), (1)

s.t. tn+1 = tn + ϑn.

sn is a segment of length of ϑn, with action class label
an → A from A predefined categories. The tn denotes the
starting timestamp of segment sn. Alternatively, most ex-
isting works [12, 21, 39] formulate it as a frame-wise clas-
sification task (Lcls) and encourage the continuity of action
segments with a smoothing term (Lsm) with the learning ob-
jective written as:

Ltas = Lcls(x, y) + ϖ · Lsm(x, y), (2)

where y → A is the action label and ϖ a trade-off parameter.
Dataset Condensation (DC). Let R = {Xr,Yr} represent
a real image dataset, where Xr → Rnr↑d denotes the set
of training samples and Yr → Rnr↑c corresponds to their
associated labels. Here, nr denotes the number of original
samples while d and c represent the dimensionality of the
input features and output labels, respectively. The objective
of dataset condensation is to construct a synthetic dataset of
ns samples, i.e. S = {Xs,Ys}, where Xs → Rns↑d and
Ys → Rns↑c, with a considerably reduced size compared
to the real dataset, such that ns ↑ nr.

3.2. Task Formulation
Given an original TAS dataset with nr training videos, rep-
resented as R = {(Xi,Yi)}nr

i=1. Each video representation
X → RT↑D and its corresponding action label Y → RT↑A

have the same temporal length T . Here, D and A denote

the dimensions of frame feature space (x → RD) and the ac-
tion space (y → RA), respectively. The goal of dataset con-
densation is to create a compact subset S = {X̂i, Ŷi}ns

i=1,
where X̂ → RT →↑d represents a condensed version of orig-
inal video. The size of S is expected to be significantly
smaller than that of the original dataset R.

This objective can be achieved through two levels of
dataset condensation: (1) Sample compression: reducing
the dimensionality of each video such that T ↓↓d ↑ T ↓D
and (2) Sample Reduction: reducing the total number of
samples, i.e., ns ↑ nr. In light of this, our condensation
framework implements reductions at both levels: for sample
compression, we propose a generative feature and temporal
condensation technique using network inversion (Sec. 3.3).
For sample reduction, we use a diversity-based sampling
strategy (Sec. 3.4).

3.3. Generative Feature & Temporal Condensation
Generative models are compact yet flexible, able to produce
outputs of various lengths, making them ideal for condens-
ing TAS datasets. The condensation process involves two
main stages. In the first stage, a generative model is trained
to represent action segments. In the second stage, a network
inversion process is applied to optimize the latent codes, en-
suring the condensed dataset captures an optimal represen-
tation of the original action segments.
Generative Action Model. We choose the Temporally Co-
herent Action (TCA) model proposed in [11] as our genera-
tive action model. TCA is essentially a compact, two-layer
MLP VAE trained to reconstruct frame features. Specif-
ically, the encoder in the TCA model takes three inputs:
frame feature x, action label a, and a coherence variable
c. The variable c is mathematically defined as the relative

: Stored to form condensed datasets

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =






max(m,n), min(m,n)=0
min(e[m→1, n]+1, e[m,n→1]+1,

e[m→1, n→1]+ (smi ↑=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. (·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s→ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s→ = argmax
si↑D\S

min
sj↑S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = ω|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., ω = 0.5. This yields an
extra ↓50% reduction in the storage of latent codes.

3.5. Decoding for TAS
Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z→k}, action labels a and length ε
(coherence variable c), with the decoder D as follows:

x̂→ = D(z→,a, c), (11)

where z→ = [z→1 ↔ 1ω1 , ..., z
→
K ↔ 1ωK]. These restored seg-

ments x̂→ are then concatenated in time to form videos X̂→,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
→, y) + ϑ · Lsm(x̂

→, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation
Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation
Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e↓3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z→. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio ω = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e↓4 for 50 epochs and
1e↓4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring

video [44]. This method effectively reduces video length to
the number of segments, i.e., RT↔D ↗ RN↔D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

position of the frame within its segment:

ci = (i→ 1)/(ω→ 1), and ci ↑ [0, 1]. (3)

The VAE’s encoder maps these inputs in a latent space
while the decoder reconstructs the frame feature x̂. We de-
note the encoder and decoder as E(x, a, c) = qω(z|x, a, c)
and D(z, a, c) = pε(x|z, a, c), respectively. The TCA
model is trained on the entire dataset’s video frames with
a reconstruction loss and a KL divergence regularizer:

LTCA = Ez log pε(x|z, a, c)︸ ︷︷ ︸
Lrecon

→DKL(qω(z|x, a, c)||p(z))︸ ︷︷ ︸
Lreg

.

(4)
An overview of the generative action model is depicted
in Fig. 2(a). In this way, a segment of Rϑ→D can be effi-
ciently compressed to a latent distribution characterized by
the mean and standard deviation (µ,ε) ↑ Rd, d is the di-
mension of the latent space. An advantage of using a gen-
erative model for condensing TAS videos is the ability to
restore the original resolution. Such a model can generate
segments of any specified length ω, producing each frame x̂
by decoding a randomly sampled latent code z as follows:

x̂i = pε(x|z, a, ci), and i ↑ [1, ..., ω]. (5)

To ensure temporal continuity of generated features, [11]
suggests a fixed latent code z is applied across all frames
within the same segment.
Network Inversion. The above model learns inherent ac-
tion priors from the video dataset, enabling it to generate
segments that reflect realistic actions. However, segments
decoded from randomly sampled latent codes can still devi-
ate significantly from real data. To limit the deviations, we
propose using network inversion. Neural network inversion
is the process of determining a neural network input when
given the corresponding output. Formally, given a neural
network f : Rn ↓ Rm that maps an input x ↑ Rn to an
output y ↑ Rm, where y = f(x). Mathematically, given an
output y, the objective of neural network inversion is to find
an input x↑ such that:

x↑ = f↓1(y), (6)

where f↓1 represents an approximate or exact inverse of
function f . Since neural networks are generally not invert-
ible, the problem can be posed as an optimization problem:

x↑ = argmin
x↔Rd

C(f(x), y), (7)

where C(·, ·) is a cost function. Note that during the inver-
sion, both f(·) and y remain fixed, while only x is updated.

As our generation depicted in Eq. (5) is at the segment
level, the inversion objective from Eq. (7) becomes:

z↑ = argmin
z↔Rd

||D(z, a, c)→ x||22, (8)

where z = z ↔ 1ϑ, a = a ↔ 1ϑ, and c = [c1, . . . , cϑ]. 1ϑ

is a vector of ones of length ω. We choose the ω2 norm as
the cost function in the inversion loss Linv to align with the
reconstruction term Lrecon in the generative model training
(as shown in Eq. (4)). Upon performing the inversion, the
optimized latent code z↑ ↑ Rd is stored for each segment.
Instances per Segment. In TAS datasets, action segments
can be particularly long, where a single global latent code
may not suffice to restore the full complexity and temporal
dynamics of the entire segment. This limitation highlights
the need for finer-grained approximations. To address this,
we introduce the concept of instances per segment, which
divides each segment into smaller, finer-grained instances
for more precise network inversion. This is akin to the in-
stances per class commonly used in existing dataset conden-
sation works [40]. We evenly split segments into smaller
instances to enable inversions at local scales.

Specifically, during the inversion step, for a given seg-
ment, we first initialize a set of K random codes {zk}Kk=1.
These codes are evenly inflated over time to match the ac-
tual length of the segment, yielding the vector z = [z1 ↔
1ϑ1 , ..., zK ↔1ϑK], where ωk = ϑ

K . The vector z is concate-
nated with the action label a and the coherence variable c,
and the combined input is fed into the decoder for network
inversion as defined in Eq. (8). After performing the inver-
sion, we store the set of optimal latent codes {z↑k}Kk=1 as
the condensed representation of the segment’s features. An
illustrative depiction of the inversion process for a segment
of length ω = 6 with K = 2 instances per segment is shown
in Fig. 2(b). Initially, two latent codes z1, z2 are randomly
sampled and expanded temporally to generate the segment
{x̂} through the decoder. The decoder remains fixed while
only the latent codes are optimized. Once optimized, the
final z↑1 , z↑2 are stored as the condensed segment.

The proposed framework simultaneously condenses fea-
ture and temporal dimensions and reduces the storage re-
quirement for each segment. Specifically, a segment x ↑
Rϑ→D can be efficiently condensed into latent codes z ↑
RK→d, with the condensation factor given by ϑ·D

K·d . At the
video level, our framework condenses the original X ↑
RT→D into a reduced representation X̂↑ ↑ RKN→d, where
N denotes the number of segments in the video, which is
substantially smaller than the original video length T .

3.4. Diverse Sequence Sampling

The condensation process described above occurs at the
sample level, reducing both feature and temporal dimen-
sions. To account for sample redundancy, we introduce a
diversity-based pruning strategy. Our intuition is that the
selected sequences, taken collectively, should capture the
maximum diversity of action ordering within the dataset.
This ensures that the pruned set retains the broadest range
of unique temporal patterns and action variations. Edit dis-

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =






max(m,n), min(m,n)=0
min(e[m→1, n]+1, e[m,n→1]+1,

e[m→1, n→1]+ (smi ↑=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. (·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s→ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s→ = argmax
si↑D\S

min
sj↑S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = ω|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., ω = 0.5. This yields an
extra ↓50% reduction in the storage of latent codes.

3.5. Decoding for TAS
Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z→k}, action labels a and length ε
(coherence variable c), with the decoder D as follows:

x̂→ = D(z→, a, c), (11)

where z→ = [z→1 ↔ 1ω1 , ..., z
→
K ↔ 1ωK]. These restored seg-

ments x̂→ are then concatenated in time to form videos X̂→,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
→, y) + ϑ · Lsm(x̂

→, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation
Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation
Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e↓3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z→. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio ω = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e↓4 for 50 epochs and
1e↓4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring

video [44]. This method effectively reduces video length to
the number of segments, i.e., RT↔D ↗ RN↔D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =






max(m,n), min(m,n)=0
min(e[m→1, n]+1, e[m,n→1]+1,

e[m→1, n→1]+ (smi ↑=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. (·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s→ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s→ = argmax
si↑D\S

min
sj↑S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = ω|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., ω = 0.5. This yields an
extra ↓50% reduction in the storage of latent codes.

3.5. Decoding for TAS
Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z→k}, action labels a and length ε
(coherence variable c), with the decoder D as follows:

x̂→ = D(z→, a, c), (11)

where z→ = [z→1 ↔ 1ω1 , ..., z
→
K ↔ 1ωK]. These restored seg-

ments x̂→ are then concatenated in time to form videos X̂→,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
→, y) + ϑ · Lsm(x̂

→, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation
Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation
Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e↓3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z→. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio ω = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e↓4 for 50 epochs and
1e↓4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring

video [44]. This method effectively reduces video length to
the number of segments, i.e., RT↔D ↗ RN↔D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =






max(m,n), min(m,n)=0
min(e[m→1, n]+1, e[m,n→1]+1,

e[m→1, n→1]+ (smi ↑=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. (·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s→ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s→ = argmax
si↑D\S

min
sj↑S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = ω|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., ω = 0.5. This yields an
extra ↓50% reduction in the storage of latent codes.

3.5. Decoding for TAS
Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z→k}, action labels a and length ε
(coherence variable c), with the decoder D as follows:

x̂→ = D(z→, a, c), (11)

where z→ = [z→1 ↔ 1ω1 , ..., z
→
K ↔ 1ωK]. These restored seg-

ments x̂→ are then concatenated in time to form videos X̂→,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
→, y) + ϑ · Lsm(x̂

→, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation
Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation
Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e↓3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z→. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio ω = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e↓4 for 50 epochs and
1e↓4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring

video [44]. This method effectively reduces video length to
the number of segments, i.e., RT↔D ↗ RN↔D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

tance measures the minimum operations needed to trans-
form one sequence into another, making it suitable for quan-
tifying sequence diversity. Given two action sequences si
and sj , we quantify the diversity with the normalized edit
distance between them:

Edit(si, sj) =
e[|si|, |sj |]

max(|si|, |sj |)
, and (9)

e[m,n] =






max(m,n), min(m,n)=0
min(e[m→1, n]+1, e[m,n→1]+1,

e[m→1, n→1]+ (smi ↑=snj))
, otherwise.

where m,n denote the action index within two comparing
sequences, respectively. (·) is an indicator function.

We then apply a furthest point sampling strategy, com-
monly used in point clouds [26], to progressively select se-
quence s→ that maximizes the diversity until the desired set
cardinality is reached. Specifically:

s→ = argmax
si↑D\S

min
sj↑S

Edit(si, sj), (10)

where D is the original dataset and S the selected set, and
|S| = ω|D|. We empirically set the size of the sampled to
half of the original dataset, i.e., ω = 0.5. This yields an
extra ↓50% reduction in the storage of latent codes.

3.5. Decoding for TAS
Neural networks are sensitive to input resolution, and train-
ing a TAS model on low-resolution or condensed input can
lead to suboptimal performance. Therefore, restoring the
original resolution of input data is essential for the segmen-
tation model to learn effectively. Different than the random
generation in [11], we restore the action segments with their
respective latent codes {z→k}, action labels a and length ε
(coherence variable c), with the decoder D as follows:

x̂→ = D(z→, a, c), (11)

where z→ = [z→1 ↔ 1ω1 , ..., z
→
K ↔ 1ωK]. These restored seg-

ments x̂→ are then concatenated in time to form videos X̂→,
and their temporal order follows the symbolic sequence
stored in the pruned set S. Hence, the training objective
in Eq. (2) of the segmentation model becomes:

Ltas = Lcls(x̂
→, y) + ϑ · Lsm(x̂

→, y), (12)

Details of the loss terms are given in the Supplementary.

4. Experiments
4.1. Datasets and Evaluation
Datasets. We evaluate our approach on three common TAS
benchmarks that vary in storage scales. GTEA [13] con-
tains 28 videos of seven kitchen activities composing 11 dif-
ferent actions. 50Salads [33] has 50 videos with 19 action

classes. Breakfast [16] dataset comprises 1,712 undirected
breakfast preparation videos. There are 10 activities and a
total of 48 action classes; each video features 5 to 14 ac-
tions. In terms of storage, the three datasets are at three
scales: GTEA is the smallest at 245 MB, 50Salads is in the
middle at 4.5 GB, and Breakfast is the largest at 28 GB.
For all datasets, we use the I3D [3] feature representations
and evaluate with the standard splits. Although I3D initially
compresses frames by transforming RGB data into feature
space, the original temporal resolution remains.
Evaluation Measures. TAS is evaluated using three met-
rics: frame-wise accuracy (Acc), segment-wise edit score
(Edit), and F1 score with varying overlap thresholds of
10%, 25%, and 50%. In addition to these conventional TAS
metrics, we also report the storage size to highlight the level
of dataset condensation.

4.2. Implementation
Generative Network Inversion. We use the TCA [11] as
our generative model, and follow their implementation as a
two-layer MLP for both encoder and decoder with the la-
tent size d = 256. On each dataset, we train the model for
7.5K epochs with a learning rate of 1e↓3. For the network
inversion, we optimize Eq. (8) for 10K iterations to obtain
the optimal latent codes z→. In all our experiments, unless
otherwise specified, we set the number of instances per seg-
ment K = 8 and the sequence sampling ratio ω = 0.5.
Segmentation Backbones. We evaluate the effectiveness
of our dataset condensation framework with two popular
TAS backbones, i.e., MSTCN [12] and ASFormer [39]. The
former is a convolution-based segmentation model, while
the latter is based on transformer architectures. We train
MSTCN with a learning rate of 5e↓4 for 50 epochs and
1e↓4 for 30 epochs with ASFormer.
Baselines. As the first work to address dataset condensation
for TAS, we establish the following baselines for compari-
son. Recognizing that storage size is a key evaluation aspect
of dataset condensation approaches, we vigorously imple-
ment the following with aligned storage sizes to ensure fair
comparisons:
– “Original” uses features of standard TAS datasets and no
dataset condensation techniques are applied.
– “Mean” is a straightforward method that stores the av-
erage frame features of action segments as representa-
tives. During TAS training, each average feature is re-
peated to match the segment length, creating a static boring

video [44]. This method effectively reduces video length to
the number of segments, i.e., RT↔D ↗ RN↔D.
– “Coreset” utilizes the Herding [38] to identify the frame
feature closest to the mean feature of the segment. The se-
lected frames are then upsampled similarly to “Mean” to re-
store the original temporal resolution. Therefore, they have
the same condensation ratio.

the full sequence set, the sampled set, such that

• TAS training with restored video features with standard
loss functions:

Preserve sequence structure and reduce redundancy
Enforce generation resemblance

GTEA [13] 50Salads [33] Breakfast [16]

Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage Acc Edit F1@{10, 25, 50} Storage

MS-TCN [12]

Original 79.0 76.3 85.8 / 83.4 / 69.8 245 MB 80.6 63.1 69.9 / 67.4 / 59.0 4.5 GB 67.2 60.6 50.5 / 46.3 / 36.8 28 GB

Mean 71.2 73.3 77.1 / 73.7 / 59.4 7.2 MB 69.0 42.7 50.0 / 46.1 / 37.4 7.8 MB 47.6 31.8 27.8 / 23.3 / 15.6 96 MB
Coreset [38] 66.7 66.1 72.4 / 68.9 / 53.2 7.2 MB 61.7 43.3 49.9 / 46.3 / 35.4 7.8 MB 49.7 36.8 32.3 / 27.5 / 19.3 96 MB
TCA [11] 60.9 54.1 59.2 / 55.3 / 39.3 - 56.4 33.6 39.8 / 35.8 / 25.9 - 34.2 20.7 17.9 / 13.8 / 8.4 -
Encoded 70.4 65.5 72.2 / 68.8 / 52.1 3.6 MB 69.0 43.6 50.6 / 46.0 / 37.4 3.9 MB 37.9 49.8 40.0 / 32.8 / 19.4 44 MB
Ours 75.2 71.9 78.3 / 74.6 / 62.7 3.6 MB 74.4 59.5 65.1 / 61.0 / 50.2 3.9 MB 55.5 45.6 46.7 / 41.1 / 28.7 44 MB

Encoded† 70.5 72.7 77.1 / 73.7 / 59.8 30.5 MB 72.1 58.2 63.2 / 60.0 / 49.3 564 MB 43.4 53.2 45.8 / 37.4 / 22.8 3.4 GB
Ours† 73.3 73.8 79.2 / 75.4 / 65.5 30.5 MB 72.8 59.8 65.2 / 61.3 / 51.3 564 MB 54.1 53.3 49.8 / 44.3 / 33.1 3.4 GB

ASFormer [39]

Original 79.7 84.6 90.1 / 88.8 / 79.2 245 MB 85.6 79.6 85.1 / 83.4 / 76.0 4.5 GB 73.5 75.0 76.0 / 70.6 / 57.4 28 GB

Mean 72.2 76.9 82.1 / 79.7 / 65.1 7.2 MB 71.6 49.8 56.6 / 52.5 / 43.4 7.8 MB 52.2 43.2 43.5 / 38.3 / 26.7 96 MB
Coreset [38] 71.0 75.4 81.0 / 78.1 / 62.9 7.2 MB 69.4 46.8 56.6 / 52.9 / 39.6 7.8 MB 52.0 48.1 48.3 / 42.4 / 29.7 96 MB
TCA [11] 62.2 57.8 63.0 / 57.4 / 39.9 - 66.8 44.0 52.2 / 47.3 / 36.6 - 36.6 28.2 26.3 / 22.1 / 14.3 -
Encoded 69.2 70.2 73.3 / 67.3 / 49.8 3.6 MB 71.2 45.4 55.0 / 50.4 / 40.2 3.9 MB 37.6 53.6 50.7 / 41.3 / 24.0 44 MB
Ours 77.9 82.7 86.4 / 84.5 / 70.4 3.6 MB 81.2 68.9 77.0 / 73.8 / 64.7 3.9 MB 59.8 48.8 54.1 / 47.7 / 34.1 44 MB

Encoded† 74.0 78.1 83.1 / 79.6 / 67.3 30.5 MB 75.6 60.1 67.7 / 64.2 / 53.5 564 MB 45.7 54.8 52.6 / 43.3 / 25.2 3.4 GB
Our’s† 75.0 79.0 83.6 / 79.5 / 67.7 30.5 MB 76.2 65.0 73.1 / 68.8 / 58.5 564 MB 61.1 61.4 62.4 / 56.0 / 42.1 3.4 GB

Table 1. Performance comparison on dataset condensation for TAS on three common benchmarks with different backbones. Storage sizes
are highlighted in colors (high, medium, low). Our method remarkably reduces storage while retaining competitive performances across
different datasets and model architectures. More details of the settings (d, K, and ω) for each method are provided in the Supplementary.

– “TCA” [11] is a baseline that follows its original imple-
mentation in which action segments are generated directly
from random latent codes. This method does not require
storage for latent codes, as they can be sampled on the fly
during decoding.
– “Encoded” is the closest to our setup, with the key differ-
ence being that, instead of using network inversion to obtain
latent codes, it stores the mean of encoded segment frames.
Specifically, zk = mean(µ1, ..., µωk). This approach results
in the same storage requirement as ours.
– “Encoded†” refers to a setup similar to “Encoded” except
for removing the sequence sampling and setting the num-
ber of instances per segment to the actual segment length,
i.e., K = ω, which creates a latent code for each individual
frame. The approach condenses along the feature dimen-
sion rather than the temporal dimension.

4.3. Effectiveness
Table 1 compares our approach (GNI) to the baselines on
three widely adopted TAS benchmarks. As observed, ap-
proaches like “Mean” and “Coreset”, which primarily con-
dense from the temporal aspect, achieve similar perfor-
mance across all datasets while maintaining an identical
storage size. Note that in the best scenario, boring videos
generated by these approaches can account for up to 80%
performance of training with the “Original”. This high-

lights the temporal redundancy present in videos. TCA [11]
does not incur additional storage requirements for the latent
code, yet it produces the lowest overall performance across
all evaluation metrics on three datasets. Although the gen-
erated segments inherit the action priors learned from the
dataset, it is still likely the decoded segments from ran-
domly sampled latent codes may not align well with the
original data. A segmentation model trained on these mis-
aligned features may not generalize well to the real testing
data.

By storing encoded mean features of segments from the
encoder as latent codes and diverse sequence sampling,
“Encoded” can manage to achieve segmentation perfor-
mance comparable to the “Mean” baseline, while requiring
only half the storage cost. The best performance is achieved
by our approach, which adds a network inversion process on
top of “Encoded”. By imposing network inversion, a sig-
nificant performance gain in segmental metrics is observed.
For instance, on the 50Salads dataset, the average F1 score
is boosted by a substantial 14.1% (from 44.7% to 58.8%).
This underscores the effectiveness of network inversion, as
it adapts the latent codes to better reflect the actual data.

Comparing across storage sizes, our approach also sig-
nificantly outperforms its counterparts, “Mean” and “Core-
set”, while only requiring roughly half the storage burden –
44 MB compared to 96 MB on the Breakfast dataset.

